Skip to main content
Log in

Temperature-dependent characteristics of ZnO phosphors from synchrotron-based vacuum ultraviolet photoluminescence spectroscopy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report the temperature-dependent emission characteristics of ZnO phosphors in the range of 10 to 300 K measured using the synchrotron-based vacuum ultraviolet (VUV) photoluminescence spectroscopy. The ZnO phosphors with different morphologies: pyramid-like and sheet-like synthesized via co-precipitation and solid-state reaction methods, respectively and reveal various defect emission bands in the UV-Vis-NIR region. In the ZnO phosphor having the sheet-like morphology, the CIE coordinates shift closer to the pure white region and the emission intensity decreases rapidly with the increase in the temperature. This is due to the strong electron–phonon interactions that level up the thermally active non-radiative recombination processes. These phosphors exhibit high thermal stability with acceptable Color Rendering Index and color quality scale values and are thus suitable for space applications spanning from detection to the utilization of VUV radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, F. Huang, ACS Nano 12, 425 (2018)

    Article  Google Scholar 

  2. X.Y. Sun, P. Gao, S. Wu, H.S. Wu, Q.L. Hu, X. Zhang, Y. Huang, Y. Tao, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 350, 36 (2015)

    Article  ADS  Google Scholar 

  3. M.C.M. Angub, C.J.T. Vergara, H.A.F. Husay, A.A. Salvador, M.J.F. Empizo, K. Kawano, Y. Minami, T. Shimizu, N. Sarukura, A.S. Somintac, J. Lumin. 203, 427 (2018)

    Article  Google Scholar 

  4. A.J. Wojtowicz, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 486, 201 (2002)

    Article  ADS  Google Scholar 

  5. A.J. Wojtowicz, W. Drozdowski, D. Wisniewski, J.L. Lefaucheur, Z. Galazka, Z. Gou, T. Lukasiewicz, J. Kisielewski, Opt. Mater. (Amst). 28, 85 (2006)

    Article  ADS  Google Scholar 

  6. W. Zheng, L. Jia, F. Huang, IScience 23, 101145 (2020)

    Article  ADS  Google Scholar 

  7. S.-J. Young, Y.-H. Liu, M.D.N.I. Shiblee, K. Ahmed, L.-T. Lai, L. Nagahara, T. Thundat, T. Yoshida, S. Arya, H. Furukawa, A. Khosla, A.C.S. Appl, Electron. Mater. 2, 3522 (2020)

    Google Scholar 

  8. X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, Z. Fan, Nat. Commun. 5, 4007 (2014)

    Article  ADS  Google Scholar 

  9. P. Wang, Y. Wang, L. Ye, M. Wu, R. Xie, X. Wang, X. Chen, Z. Fan, J. Wang, W. Hu, Small 14, 1800492 (2018)

    Article  Google Scholar 

  10. B.M. Cheng, L. Yu, C.K. Duan, H. Wang, P.A. Tanner, J. Phys. Condens. Matter 20, 345231 (2008)

    Article  Google Scholar 

  11. C.H. Lu, W.J. Hwang, S.V. Godbole, J. Mater. Res. 20, 464 (2005)

    Article  ADS  Google Scholar 

  12. C. Shi, Z. Fu, C. Guo, X. Ye, Y. Wei, J. Deng, J. Shi, G. Zhang, J. Electron Spectros. Relat. Phenomena 101–103, 629 (1999)

    Article  Google Scholar 

  13. J. Wang, R. Chen, L. Xiang, S. Komarneni, Ceram. Int. 44, 7357 (2018)

    Article  Google Scholar 

  14. A. Samavati, A. Awang, Z. Samavati, A.F. Ismail, M.H.D. Othman, M. Velashjerdi, G. Eisaabadi, A. Rostami, Mater. Sci. Eng. B 263, 114811 (2021)

    Article  Google Scholar 

  15. M. Chandrika, A.V. Ravindra, C. Rajesh, S. Ju, Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  16. K.E. Rady, O.A. Desouky, Eur. Phys. J. Plus 136, 1011 (2021)

    Article  Google Scholar 

  17. P. Kaur, S. Kriti, D.A. Kaur, A.K. Rahul, D.P. Singh, Mater Res. Express 6, 115920 (2019)

    Article  ADS  Google Scholar 

  18. D. Arora, K. Asokan, S. Kumar, S. Kaur, P. Kaur, G.P. Singh, A. Mahajan, S. Kalia, N. Kalia, K. Seth, P. Kaur, D.P. Singh, J. Am. Ceram. Soc. 101, 4023 (2018)

    Article  Google Scholar 

  19. A.S. Gadallah, M.M. El-Nahass, Adv. Condens. Matter Phys. 1, 2013 (2013)

    Google Scholar 

  20. K. Park, D.A. Hakeem, J.W. Pi, G.W. Jung, J. Alloys Compd. 772, 1040 (2019)

    Article  Google Scholar 

  21. G. Bin Zhang, C.S. Shi, Z.F. Han, J.Y. Shi, Z.X. Fu, M. Kirm, G. Zimmerer, Chinese Phys. Lett. 18, 441 (2001)

    Article  ADS  Google Scholar 

  22. A.B. Djurišić, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Appl. Phys. Lett. 88, 103107 (2006)

    Article  ADS  Google Scholar 

  23. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett. 78, 2285 (2001)

    Article  ADS  Google Scholar 

  24. S. Fabbiyola, V. Sailaja, L.J. Kennedy, M. Bououdina, J.J. Vijaya, J. Alloys Compd. 694, 522 (2017)

    Article  Google Scholar 

  25. S. Vempati, J. Mitra, P. Dawson, Nanoscale Res. Lett. 7, 470 (2012)

    Article  ADS  Google Scholar 

  26. V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat, A. Yousif, M.M. Duvenhage, Mater. Lett. 101, 57 (2013)

    Article  Google Scholar 

  27. P. Kaur, S. Kaur, Kriti, D. Arora, P. Vashishtha, G. Gupta, C.-L. Chen, C.-L. Dong, K. Asokan, and D. P. Singh, J. Appl. Phys. 128, 143104 (2020)

  28. M. Wang, Y. Zhou, Y. Zhang, E. Jung Kim, S. Hong Hahn, S. Gie Seong, Appl. Phys. Lett. 100, 101906 (2012)

    Article  ADS  Google Scholar 

  29. R.K. Biroju, P.K. Giri, J. Appl. Phys. 122, 044302 (2017)

    Article  ADS  Google Scholar 

  30. Y. Chen, W. Wen, Y. Zhu, N. Mao, Q. Feng, M. Zhang, H.P. Hsu, J. Zhang, Y.S. Huang, L. Xie, Nanotechnology 27, 1 (2016)

    Google Scholar 

  31. M.S. Aida, M. Hjiri, J. Mater. Sci. Mater. Electron. 31, 10521 (2020)

    Article  Google Scholar 

  32. R.J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, M. Mitomo, Appl. Phys. Lett. 90, 1 (2007)

    Google Scholar 

  33. D.A. Hakeem, J.W. Pi, G.W. Jung, S.W. Kim, K. Park, Dye. Pigment. 160, 234 (2019)

    Article  Google Scholar 

  34. S. Kaur, D. Arora, S. Kumar, G. Singh, S. Mohan, P. Kaur, Kriti, P. Kaur, and D. P. Singh, J. Lumin. 202, 168 (2018)

  35. D.A. Hakeem, J.W. Pi, S.W. Kim, K. Park, Inorg. Chem. Front. 5, 1336 (2018)

    Article  Google Scholar 

  36. P. Kaur, Kriti, Rahul, S. Kaur, A. Kandasami, and D. P. Singh, Opt. Lett. 45, 3349 (2020)

Download references

Acknowledgements

The authors gratefully acknowledge NSRRC, Hsinchu (Taiwan), for beam time and Prof. C. L. Dong, Department of Physics, Tamkang University, Taiwan, for motivation and helpful discussions.

Funding

Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore (JNC/Synchrotron and Neutron/2018/IN-010); Department of Science and Technology, Ministry of Science and Technology, India (IF160408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kaur.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Kriti, Rahul et al. Temperature-dependent characteristics of ZnO phosphors from synchrotron-based vacuum ultraviolet photoluminescence spectroscopy. Eur. Phys. J. Plus 137, 142 (2022). https://doi.org/10.1140/epjp/s13360-022-02356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02356-9

Navigation