Skip to main content
Log in

Quest for two-proton radioactivity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Two-proton emission half-lives (\(T_{1/2}^{2p}\) values) of nuclei are determined employing the interaction potential involving Coulomb and proximity potentials. We compare \(T_{1/2}^{2p}\) values with those calculated using the empirical method, and to assess the precision of the present model in reproducing the experimental half-lives, a comparison is made with experimental ones as well. In light and medium mass region, we have reported few nuclei, viz. \(^{22}\)Si, \(^{26}\)S, \(^{30}\)Ar, \(^{34}\)Ca, \(^{36,38}\)Ti, \(^{40,42}\)Cr, \(^{52}\)Zn, \(^{58,60}\)Ge, \(^{62}\)Se and \(^{64,66,68}\)Kr, as two-proton emitters. Moreover, such radioactivity in \(^{60}\)Ge and \(^{68}\)Kr nuclei can be identified experimentally. However, we require disintegration energy (\(Q_{2p}\) values) as an input in order to predict the \(T_{1/2}^{2p}\) values of experimentally unknown even–even superheavy nuclei (SHN), and employing periodic orbit theory within microscopic–macroscopic formalism, we have calculated \(Q_{2p}\) values of these nuclei whose atomic number lies between 118 and 126. Subsequently, we determine the logarithmic values of \(T_{1/2}^{2p}\)’s for even–even unknown SHN and compare the obtained results with those calculated exploiting the empirical method. Also, the study of spontaneous fission half-lives, \(\alpha \)-decay half-lives and branching ratios leads us to establish that no signatures of two-proton radioactivity exist in the superheavy region. We believe that such predictions may help in the experimental identification of 2p-radioactivity in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data used to support the findings of this study are included within the article. This manuscript has no additional associated data.

References

  1. Y.B. Zeldovich, Sov. Phys. JETP 11, 812 (1960)

    Google Scholar 

  2. V. Goldansky, Nucl. Phys. 27, 648 (1961)

    Article  Google Scholar 

  3. V.I. Goldansky, Nucl. Phys. 19, 482 (1960)

    Article  Google Scholar 

  4. R.A. Kryger, A. Azhari, M. Hellström, J.H. Kelley, T. Kubo, R. Pfaff, E. Ramakrishnan, B.M. Sherrill, M. Thoennessen, S. Yokoyama, R.J. Charity, J. Dempsey, A. Kirov, N. Robertson, D.G. Sarantites, L.G. Sobotka, J.A. Winger, Phys. Rev. Lett. 74, 860 (1995). https://doi.org/10.1103/PhysRevLett.74.860

  5. W. Whaling, Phys. Rev. 150, 836 (1966). https://doi.org/10.1103/PhysRev.150.836

  6. G.J. KeKelis, M.S. Zisman, D.K. Scott, R. Jahn, D.J. Vieira, J. Cerny, F. Ajzenberg-Selove, Phys. Rev. C 17, 1929 (1978). https://doi.org/10.1103/PhysRevC.17.1929

  7. M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K. Rykaczewski, K. Schmidt, R. Simon, M. Stanoiu, J.-C. Thomas, Eur. Phys. J. A 14, 279 (2002)

    Article  ADS  Google Scholar 

  8. J. Giovinazzo, B. Blank, M. Chartier, S. Czajkowski, A. Fleury, M.J. Lopez Jimenez, M.S. Pravikoff, J.-C. Thomas, F. de Oliveira Santos, M. Lewitowicz, V. Maslov, M. Stanoiu, R. Grzywacz, M. Pfützner, C. Borcea, B.A. Brown, Phys. Rev. Lett. 89, 102501 (2002). https://doi.org/10.1103/PhysRevLett.89.102501

  9. B. Blank, A. Bey, G. Canchel, C. Dossat, A. Fleury, J. Giovinazzo, I. Matea, N. Adimi, F. De Oliveira, I. Stefan, G. Georgiev, S. Grévy, J.C. Thomas, C. Borcea, D. Cortina, M. Caamano, M. Stanoiu, F. Aksouh, B.A. Brown, F.C. Barker, W.A. Richter, Phys. Rev. Lett. 94, 232501 (2005). https://doi.org/10.1103/PhysRevLett.94.232501

  10. M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, A. Stolz, T. Baumann, J.S. Berryman, H. Czyrkowski, R. Dabrowski, A. Fijałkowska, T. Ginter, J. Johnson, G. Kamiński, N. Larson, S.N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K.P. Rykaczewski, S. Suchyta, Phys. Rev. C 90, 014311 (2014). https://doi.org/10.1103/PhysRevC.90.014311

  11. M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, T. Baumann, J.S. Berryman, H. Czyrkowski, R. Dabrowski, T. Ginter, J. Johnson, G. Kamiński, A. Kuźniak, N. Larson, S.N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K.P. Rykaczewski, A. Stolz, S. Suchyta, Phys. Rev. C 83, 061303 (2011). https://doi.org/10.1103/PhysRevC.83.061303

  12. I. Mukha, K. Sümmerer, L. Acosta, M.A.G. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, J. Espino, A. Fomichev, J.E. García-Ramos, H. Geissel, J. Gómez-Camacho, L. Grigorenko, J. Hoffmann, O. Kiselev, A. Korsheninnikov, N. Kurz, Y. Litvinov, I. Martel, C. Nociforo, W. Ott, M. Pfutzner, C. Rodríguez-Tajes, E. Roeckl, M. Stanoiu, H. Weick, P.J. Woods, Phys. Rev. Lett. 99, 182501 (2007) https://doi.org/10.1103/PhysRevLett.99.182501

  13. I. Mukha, L.V. Grigorenko, X. Xu, L. Acosta, E. Casarejos, A.A. Ciemny, W. Dominik, J. Duénas-Díaz, V. Dunin, J.M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, T.A. Golubkova, A. Gorshkov, Z. Janas, G. Kamiński, O. Kiselev, R. Knöbel, S. Krupko, M. Kuich, Y.A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, C. Nociforo, A.K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A.M. Sánchez-Benítez, C. Scheidenberger, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y.K. Tanaka, H. Weick, M. Winkler, J.S. Winfield, M.V. Zhukov, Phys. Rev. Lett. 115, 202501 (2015). https://doi.org/10.1103/PhysRevLett.115.202501

  14. T. Goigoux, P. Ascher, B. Blank, M. Gerbaux, J. Giovinazzo, S. Grévy, T. Kurtukian Nieto, C. Magron, P. Doornenbal, G.G. Kiss, S. Nishimura, P.-A. Söderström, V.H. Phong, J. Wu, D.S. Ahn, N. Fukuda, N. Inabe, T. Kubo, S. Kubono, H. Sakurai, Y. Shimizu, T. Sumikama, H. Suzuki, H. Takeda, J. Agramunt, A. Algora, V. Guadilla, A. Montaner-Piza, A.I. Morales, S.E.A. Orrigo, B. Rubio, Y. Fujita, M. Tanaka, W. Gelletly, P. Aguilera, F. Molina, F. Diel, D. Lubos, G. de Angelis, D. Napoli, C. Borcea, A. Boso, R.B. Cakirli, E. Ganioglu, J. Chiba, D. Nishimura, H. Oikawa, Y. Takei, S. Yagi, K. Wimmer, G. de France, S. Go, B.A. Brown, Phys. Rev. Lett. 117, 162501 (2016). https://doi.org/10.1103/PhysRevLett.117.162501

  15. L.V. Grigorenko, M.V. Zhukov, Phys. Rev. C 76, 014009 (2007). https://doi.org/10.1103/PhysRevC.76.014009

  16. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958). https://doi.org/10.1103/RevModPhys.30.257

  17. K. Miernik, W. Dominik, Z. Janas, M. Pfützner, L. Grigorenko, C.R. Bingham, H. Czyrkowski, M. Ćwiok, I.G. Darby, R. Dabrowski, T. Ginter, R. Grzywacz, M. Karny, A. Korgul, W. Kuśmierz, S.N. Liddick, M. Rajabali, K. Rykaczewski, A. Stolz, Phys. Rev. Lett. 99, 192501 (2007). https://doi.org/10.1103/PhysRevLett.99.192501

  18. E. Olsen, M. Pfützner, N. Birge, M. Brown, W. Nazarewicz, A. Perhac, Phys. Rev. Lett. 110, 222501 (2013). https://doi.org/10.1103/PhysRevLett.110.222501

  19. V. Galitsky, V. Cheltsov, Nucl. Phys. 56, 86 (1964). https://doi.org/10.1016/0029-5582(64)90455-9

    Article  Google Scholar 

  20. R. Álvarez-Rodríguez, H.O.U. Fynbo, A.S. Jensen, E. Garrido, Phys. Rev. Lett. 100, 192501 (2008). https://doi.org/10.1103/PhysRevLett.100.192501

  21. F.C. Barker, Phys. Rev. C 63, 047303 (2001). https://doi.org/10.1103/PhysRevC.63.047303

  22. B.A. Brown, Phys. Rev. C 43, R1513 (1991). https://doi.org/10.1103/PhysRevC.43.R1513

  23. W. Nazarewicz, J. Dobaczewski, T.R. Werner, J.A. Maruhn, P.-G. Reinhard, K. Rutz, C.R. Chinn, A.S. Umar, M.R. Strayer, Phys. Rev. C 53, 740 (1996). https://doi.org/10.1103/PhysRevC.53.740

  24. L.V. Grigorenko, M.V. Zhukov, Phys. Rev. C 68, 054005 (2003). https://doi.org/10.1103/PhysRevC.68.054005

  25. B.A. Brown, F.C. Barker, Phys. Rev. C 67, 041304 (2003). https://doi.org/10.1103/PhysRevC.67.041304

  26. J. Rotureau, J. Okołowicz, M. Płoszajczak, Nucl. Phys. A 767, 13 (2006). https://doi.org/10.1016/j.nuclphysa.2005.12.005

    Article  ADS  Google Scholar 

  27. D.S. Delion, R.J. Liotta, R. Wyss, Phys. Rev. C 87, 034328 (2013). https://doi.org/10.1103/PhysRevC.87.034328

  28. I. Sreeja, M. Balasubramaniam, Eur. Phys. J. A 55, 33 (2019)

    Article  ADS  Google Scholar 

  29. M. Gonçalves, N. Teruya, O. Tavares, S. Duarte, Phys. Lett. B 774, 14 (2017). https://doi.org/10.1016/j.physletb.2017.09.032

    Article  ADS  Google Scholar 

  30. J.P. Cui, Y.H. Gao, Y.Z. Wang, J.Z. Gu, Phys. Rev. C 101, 014301 (2020). https://doi.org/10.1103/PhysRevC.101.014301

  31. Y. Wang, J. Cui, Y. Gao, J. Gu, Commun. Theor. Phys. 73, 075301 (2021). https://doi.org/10.1088/1572-9494/abfa00

  32. O.A.P. Tavares, E.L. Medeiros, Eur. Phys. J. A 54, 65 (2018)

    Article  ADS  Google Scholar 

  33. Y. J. Yao, G. L. Zhang, W. W. Qu, J. Q. Qian, Eur. Phys. J. A 51, 122 (2015). https://doi.org/10.1140/epja/i2015-15122-0

  34. O.N. Ghodsi, A. Daei-Ataollah, Phys. Rev. C 93, 024612 (2016). https://doi.org/10.1103/PhysRevC.93.024612

  35. K.P. Santhosh, C. Nithya, Phys. Rev. C 97, 044615 (2018). https://doi.org/10.1103/PhysRevC.97.044615

  36. K. Santhosh, A. Augustine, C. Nithya, B. Priyanka, Nucl. Phys. A 951, 116 (2016). https://doi.org/10.1016/j.nuclphysa.2016.03.041

    Article  ADS  Google Scholar 

  37. O. Ghodsi, M. Hassanzad, Nucl. Phys. A 987, 369 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.001

    Article  ADS  Google Scholar 

  38. O.N. Ghodsi, M. Hassanzad, Phys. Rev. C 101, 034606 (2020). https://doi.org/10.1103/PhysRevC.101.034606

  39. J. Błocki, J. Randrup, W.J. Światecki, C.F. Tsang, Ann. Phys. 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4

    Article  ADS  Google Scholar 

  40. D. Pathak, N. Singh, H. Kaur, S.R. Jain, J. Phys. G Nucl. Part. Phys. 48, 075103 (2021). https://doi.org/10.1088/1361-6471/abe281

  41. D. Brink, N. Takigawa, Nucl. Phys. A 279, 159 (1977). https://doi.org/10.1016/0375-9474(77)90427-4

    Article  ADS  Google Scholar 

  42. G. Royer, Nucl. Phys. A 848, 279 (2010). https://doi.org/10.1016/j.nuclphysa.2010.09.009

    Article  ADS  Google Scholar 

  43. P. Möller, A.J. Sierka, T. Ichikawa, H. Sagawa, Atomic Data Nucl. Data Tables 109–110, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002

    Article  ADS  Google Scholar 

  44. Y. Qian, Z. Ren, D. Ni, Phys. Rev. C 83, 044317 (2011)

    Article  ADS  Google Scholar 

  45. L.D. Landau, E. Lifshitz, Quantum Mechanics, Non-Relativistic Theory (Pergamon Press, 1977)

  46. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. 1 (Benjamin, New York, 1969)

    MATH  Google Scholar 

  47. N. Anyas-Weiss, J. Cornell, P. Fisher, P. Hudson, A. Menchaca-Rocha, D. Millener, A. Panagiotou, D. Scott, D. Strottman, D. Brink, B. Buck, P. Ellis, T. Engeland, Phys. Rep. 12, 201 (1974)

    Article  ADS  Google Scholar 

  48. E.L. Medeiros, M.M.N. Rodrigues, S.B. Duarte, O.A.P. Tavares, J. Phys. G Nucl. Part. Phys. 32, B23 (2006). https://doi.org/10.1088/0954-3899/32/8/b01

  49. K.-N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann, H. Mark, Atom. Data Nucl. Data Tables 18, 243 (1976). https://doi.org/10.1016/0092-640X(76)90027-9

    Article  ADS  Google Scholar 

  50. https://www.nndc.bnl.gov/nudat2/

  51. Sreeja, I. and Balasubramaniam, M., Eur. Phys. J. A 54, 106 (2018) https://doi.org/10.1140/epja/i2018-12542-2

  52. J.-G. Deng, H.-F. Zhang, G. Royer, Phys. Rev. C 101, 034307 (2020). https://doi.org/10.1103/PhysRevC.101.034307

  53. A. Bhagwat, Phys. Rev. C 90, 064306 (2014). https://doi.org/10.1103/PhysRevC.90.064306

  54. S. Monga, N.R. Dwivedi, D. Pathak, H. Kaur, S.R. Jain, J. Phys. G Nucl. Part. Phys. 46, 115110 (2019). https://doi.org/10.1088/1361-6471/ab4485

  55. G. Royer, A. Subercaze, Nucl. Phys. A 917, 1 (2013). https://doi.org/10.1016/j.nuclphysa.2013.09.003

    Article  ADS  Google Scholar 

  56. I. Ragnarsson, S. Nilsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, 2005)

  57. R. Roy, B. Nigam, Nuclear Physics: Theory and Experiment (Wiley, 1967). https://books.google.co.in/books?id=kAFRAAAAMAAJ

  58. M.C. Gutzwiller, J. Math. Phys. 12, 343 (1971). https://doi.org/10.1063/1.1665596

    Article  ADS  Google Scholar 

  59. V.M. Strutinsky, A.G. Magner, S.R. Ofengenden, T. Døssing, Z. Phys. A 283, 269 (1977)

    Article  ADS  Google Scholar 

  60. M. Brack, R.K. Bhaduri, Semiclassical Physics, Frontiers in Physics (Westview Press, 2003). https://books.google.co.in/books?id=a0AABe1Hve8C

  61. M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972). https://doi.org/10.1103/RevModPhys.44.320

  62. M. Brack, S.R. Jain, Phys. Rev. A 51, 3462 (1995). https://doi.org/10.1103/PhysRevA.51.3462

  63. C. Amann, M. Brack, J. Phys. A Math. Gen. 35, 6009 (2002). https://doi.org/10.1088/0305-4470/35/29/306

  64. H. Kaur, S.R. Jain, J. Phys. G Nucl. Part. Phys. 42, 115103 (2015). http://stacks.iop.org/0954-3899/42/i=11/a=115103

  65. H. Kaur, S.R. Jain, S.S. Malik, Phys. Lett. A 378, 388 (2014). https://doi.org/10.1016/j.adt.2018.03.003

    Article  ADS  Google Scholar 

  66. S.R. Jain, A. K. Jain, Phys. Lett. B 370, 1 (1996)

  67. S.R. Jain, J. Phys. G Nucl. Part. Phys. 30, 157 (2004). https://doi.org/10.1088/0954-3899/30/2/013

  68. N.R. Dwivedi, H. Kaur, S.R. Jain, Eur. Phys. J. A 54, 49 (2018). https://doi.org/10.1140/epja/i2018-12480-y

  69. S. Monga, H. Kaur, S.R. Jain, Int. J. Mod. Phys. E 29, 2050071 (2020)

    Article  ADS  Google Scholar 

  70. N.R. Dwivedi, S. Monga, H. Kaur, S.R. Jain, Int. J. Mod. Phys. E 28, 1950061 (2019)

    Article  ADS  Google Scholar 

  71. H. Kaur, P. Singh, S.S. Malik, J. Phys. G Nucl. Part. Phys. 42, 25105 (2015)

    Article  Google Scholar 

  72. H. Kaur, P. Singh, Eur. Phys. J. A 52, 360 (2016)

    Article  ADS  Google Scholar 

  73. S. Monga, H. Kaur, Int. J. Mod. Phys. E 30, 2150020 (2021)

    Article  ADS  Google Scholar 

  74. G. Royer, M. Jaffré, D. Moreau, Phys. Rev. C 86, 044326 (2012). https://doi.org/10.1103/PhysRevC.86.044326

  75. B. Jennings, R. Bhaduri, M. Brack, Nucl. Phys. A 253, 29 (1975). https://doi.org/10.1016/0375-9474(75)90119-0

    Article  ADS  Google Scholar 

  76. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175

  77. A. Jensen, J. Damgaard, Nucl. Phys. A 203, 578 (1973). https://doi.org/10.1016/0375-9474(73)90365-5

    Article  ADS  Google Scholar 

  78. P. Möller, M. Mumpower, T. Kawano, W. Myers, At. Data Nucl. Data Tables 125, 1 (2019). https://doi.org/10.1016/j.adt.2018.03.003

    Article  ADS  Google Scholar 

  79. C. Xu, Z. Ren, Y. Guo, Phys. Rev. C 78, 044329 (2008). https://doi.org/10.1103/PhysRevC.78.044329

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harjeet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, D., Singh, P., Parshad, H. et al. Quest for two-proton radioactivity. Eur. Phys. J. Plus 137, 272 (2022). https://doi.org/10.1140/epjp/s13360-022-02354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02354-x

Navigation