Skip to main content
Log in

Dual function twin slotted waveguide for optical pulse compression and dispersion compensation in the second and third telecom windows, respectively

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper presents a dual function twin slotted waveguide to compensate the dispersion of conventional optical fibers in third telecom window and compress optical pulse to an ultrashort pulse at the wavelength of 1310 nm. By analyzing the data obtained using finite-difference time-domain method, a very high negative dispersion was obtained as much as − 24,700 ps/nm.km at the wavelength of 1550 nm. Moreover, the value of relative dispersion slope (RDS) for the designed structure was calculated to be 0.00342 nm−1 which is closely match to that of the conventional optical fibers. On the other hand, zero dispersion wavelength for the proposed design was achieved at the wavelength of 1340 nm and by applying an optical pulse with FWHM of 100 fs at the wavelength of 1310 nm, the output pulse was compressed with the compression factor of 13.8 after the waveguide length of 14 mm. The dual functionality of the proposed waveguide due to very high negative dispersion with matched RDS to that of the conventional optical fibers and high compression factor alongside minimum sized structure makes our design very appropriate for optical integration using Y couplers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2:
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: This work is theoretical research and the data used to support the findings of the study are available within the article.]

References

  1. R.S. Tucker, Optics versus electronics for high-speed switching and signal processing. IEEE Photonics Soc. Summer Top. (2010). https://doi.org/10.1109/PHOSST.2010.5553656

    Article  Google Scholar 

  2. R.S. Tucker, K. Hinton, Energy consumption and energy density in optical and electronic signal processing. Photonics J. IEEE 3(5), 821–833 (2011)

    Article  ADS  Google Scholar 

  3. A. Singh, A.K. Tiwari, R. Srivastava, Design and analysis of hybrid optical and electronic buffer based optical packet switch. Sādhanā (2018). https://doi.org/10.1007/s12046-018-0786-1

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Singh, J.K. Rai, A.K. Sharma, Analysis of AWG-based optical data center switches. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2019-0140

    Article  Google Scholar 

  5. C. Qiu, Y. Yang, C. Li et al., All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci. Rep. 7, 17046 (2017). https://doi.org/10.1038/s41598-017-16989-9

    Article  ADS  Google Scholar 

  6. L. Cong, Y.K. Srivastava, H. Zhang et al., All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci. Appl. 7, 28 (2018). https://doi.org/10.1038/s41377-018-0024-y

    Article  ADS  Google Scholar 

  7. P. Minzioni et al., Roadmap on all-optical processing. J. Opt. 21, 063001 (2019)

    Article  ADS  Google Scholar 

  8. F. Kish et al., System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24(1), 1–20 (2018). https://doi.org/10.1109/JSTQE.2017.2717863

    Article  MathSciNet  Google Scholar 

  9. Y. Hu, J. You, M. Tong, X. Zheng, Z. Xu, X. Cheng, T. Jiang, Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices. J. Adv. Opt. (2020). https://doi.org/10.1002/advs.202000799

    Article  Google Scholar 

  10. J. Bohn, T.S. Luk, C. Tollerton et al., All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nat. Commun. 12, 1017 (2021). https://doi.org/10.1038/s41467-021-21332-y

    Article  ADS  Google Scholar 

  11. M. Seifouri, S. Olyaee, M. Dekamin, K. Rahim, Dispersion compensation in optical transmission systems using high negative dispersion chalcogenide/silica hybrid microstructured optical fiber. Opt. Rev. 24, 318–324 (2017). https://doi.org/10.1007/s10043-017-0322-2

    Article  Google Scholar 

  12. R. Karami, M. Seifouri, S. Olyaee, M. Chitsazian, M.R. Alizadeh, Numerical analysis of a circular chalcogenide/silica hybrid nanostructured photonic crystal fiber for the purpose of dispersion compensation. Int. J. Numer. Model. (2016). https://doi.org/10.1002/jnm.2184

    Article  Google Scholar 

  13. Q. Liu, S. Gao, Z. Li, Y. Xie, S. He, Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion. Appl. Opt. 50, 1260–1265 (2011)

    Article  ADS  Google Scholar 

  14. S.K. Biswas, M. Ifaz Ahmad Isti, M.M. Alam Mia, H. Talukder, K. Chakrabarti, Numerical analysis of an ultra-high negative dispersion compensating micro-structured optical fiber with air-holes arranged in octagonal structure. Devices Integr. Circuit (DevIC). (2021). https://doi.org/10.1109/DevIC50843.2021.9455766

    Article  Google Scholar 

  15. M.I. Islam, K. Ahmed, B.K. Paul, S. Chowdhury, S. Sen, M.S. Islam et al., Ultra-high negative dispersion and nonlinearity based single mode photonic crystal fiber: design and analysis. J. Opt. 48(1), 18–25 (2019)

    Article  Google Scholar 

  16. Q. Ruan et al., 1.61–1.85 μm tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 μm dissipative solitons. IEEE Photonics J. 9(1), 1–7 (2017). https://doi.org/10.1109/JPHOT.2017.2657760

    Article  Google Scholar 

  17. G. Jargot et al., Soliton compression in a multipass cell, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1. https://doi.org/10.1109/CLEOE-EQEC.2019.8873023.

  18. L. Xu, M. Yang, Y. Guo, H. Liu, G. Li, L. Zhang, Ultrafast pulse manipulation in dispersion-flattened waveguides with four zero-dispersion wavelengths. J. Lightwave Technol. 37(24), 6174–6182 (2019). https://doi.org/10.1109/JLT.2019.2947302

    Article  ADS  Google Scholar 

  19. J. Liu et al., Ultralow-power chip-based soliton microcombs for photonic integration. Optica 5, 1347 (2018)

    Article  ADS  Google Scholar 

  20. E. Lucas, M. Karpov, H. Guo et al., Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736 (2017). https://doi.org/10.1038/s41467-017-00719-w

    Article  ADS  Google Scholar 

  21. M.E. Fermann, M. Hofer, F. Haberl, A.J. Schmidt, L. Turi, Additive-pulse-compression mode locking of a neodymium fiber laser. Opt. Lett. 16, 244–246 (1991)

    Article  ADS  Google Scholar 

  22. Y. Morimoto, P. Baum, Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018). https://doi.org/10.1038/s41567-017-0007-6

    Article  Google Scholar 

  23. A. Blanco-Redondo, C. Husko, D. Eades et al., Observation of soliton compression in silicon photonic crystals. Nat. Commun. 5, 3160 (2014). https://doi.org/10.1038/ncomms4160

    Article  ADS  Google Scholar 

  24. J.W. Choi, B.-U. Sohn, G.F.R. Chen, D.K.T. Ng, D.T.H. Tan, Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics 4, 110804 (2019). https://doi.org/10.1063/1.5113758

    Article  ADS  Google Scholar 

  25. S. Olyaee, M. Seifouri, R. Karami, A. Mohebzadeh-Bahabady, Designing a high sensitivity hexagonal nano-cavity photonic crystal resonator for the purpose of seawater salinity sensing. Opt. Quantum Electron. (2019). https://doi.org/10.1007/s11082-019-1778-z

    Article  Google Scholar 

  26. F. Fathi, M.R. Rashidi, P. Samadi Pakchin, S. Ahmadi-Kandjani, A. Nikniazi, Photonic-crystal based biosensors: emerging inverse opals for biomarker detection. Talanta 221, 121615 (2021)

    Article  Google Scholar 

  27. H. Shafiee, E. Lidstone, M. Jahangir et al., Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci. Rep. 4, 4116 (2014). https://doi.org/10.1038/srep04116

    Article  Google Scholar 

  28. R. Taylor, T. Otanicar, G. Rosengarten, Nanofluid-based optical filter optimization for PV/T systems. Light Sci. Appl. 1, e34 (2012). https://doi.org/10.1038/lsa.2012.34

    Article  ADS  Google Scholar 

  29. G. Delphi, S. Olyaee, M. Seifouri, A. Mohebzadeh-Bahabady, Design of low cross-talk and high quality factor 2-channel and 4-channel optical demultiplexers based on photonic crystal nano-ring resonator. Photonics Netw. Commun. 38(2), 250–257 (2019)

    Article  Google Scholar 

  30. M. Mohammadi, M. Seifouri, S. Olyaee, M. Karamirad, Optimization and realization all-optical compact five-channel demultiplexer using 2D photonic crystal based hexagonal cavities. J. Comput. Electron. (2021). https://doi.org/10.1007/s10825-021-01671-1

    Article  Google Scholar 

  31. S. Olyaee, M. Seifouri, E. Azimi -Sourani, Design and numerical analysis of an all-optical 4-channel power splitter in E, S, C, L, and U bands via nano-line defects in photonic crystal four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. J. Opt. Commun. 41(3), 241–247 (2020)

    Article  Google Scholar 

  32. G. Delphi, S. Olyaee, M. Seifouri, A. Mohebzadeh-Bahabady, Design of an add filter and a 2-channel optical demultiplexer with high quality factor based on nano-ring resonator. J. Comput. Electron. 18, 1372–1378 (2019)

    Article  Google Scholar 

  33. Y. Cheng et al., Mid-infrared spectral compression of soliton pulse in an adiabatically suspended silicon waveguide taper. IEEE Photonics J. 11(4), 1–11 (2019). https://doi.org/10.1109/JPHOT.2019.2927392

    Article  Google Scholar 

  34. J. Huang, M.S.A. Gandhi, Q. Li, Self-similar chirped pulse compression in the tapered silicon ridge slot waveguide. IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2020). https://doi.org/10.1109/JSTQE.2019.2935318

    Article  Google Scholar 

  35. Y.S. Lee, C.G. Lee, F. Bahloul, S. Kim, K. Oh, Corrections to “Simultaneously achieving a large negative dispersion and a high birefringence over Er and Tm dual gain bands in a square lattice photonic crystal fiber. J. Lightwave Technol. 37(13), 3431–3431 (2019). https://doi.org/10.1109/JLT.2019.2914849

    Article  ADS  Google Scholar 

  36. R.R. Mahmud, M.A.G. Khan, S.M.A. Razzak, Design and comparison of SF57 over SiO2 on same structured PCF for residual dispersion compensation. IEEE Photonics J. 8(6), 1–10 (2016). https://doi.org/10.1109/JPHOT.2016.2628802

    Article  Google Scholar 

  37. A. Bala, K.R. Chowdhury, Md.B. Mia, M. Faisal, Highly birefringent, highly negative dispersion compensating photonic crystal fiber. Appl. Opt. 56, 7256–7261 (2017)

    Article  ADS  Google Scholar 

  38. Y.S. Lee, C.G. Lee, F. Bahloul, S. Kim, K. Oh, Simultaneously achieving a large negative dispersion and a high birefringence over Er and Tm dual gain bands in a square lattice photonic crystal fiber. J. Lightwave Technol. 37(4), 1254–1263 (2019). https://doi.org/10.1109/JLT.2019.2891756

    Article  ADS  Google Scholar 

  39. N. Ashok, Y. Lak Lee, W. Shin, “Chalcogenide waveguide structure for dispersion in mid-infrared wavelength. Jpn. J. Appl. Phys. 56, 032501 (2017)

    Article  ADS  Google Scholar 

  40. N. Ashok, Y.L. Lee, W. Shin, Design and study of strip-slot waveguide structure for dispersion analysis. IEEE Photonics J. 8(1), 1–8 (2016). https://doi.org/10.1109/JPHOT.2016.2519285

    Article  Google Scholar 

  41. J. Yuan, J. Chen, F. Li, C. Mei, Z. Kang, X. Zhang, Y. Xu, B. Yan, X. Sang, Q. Wu, X. Zhou, K. Zhong, K. Wang, C. Yu, G. Farrell, P.K.A. Wai, Mid-infrared self-similar compression of picosecond pulse in an inversely tapered silicon ridge waveguide. Opt. Express 25, 33439–33450 (2017)

    Article  ADS  Google Scholar 

  42. J. Huang, M.S.A. Gandhi, Q. Li, Self-similar chirped pulse compression in the tapered silicon ridge slot waveguide. IEEE J. Sel. Top. Quantum Electron.ics 26(2), 1–8 (2020). https://doi.org/10.1109/JSTQE.2019.2935318

    Article  Google Scholar 

  43. V.S. Shiryaev, M.F. Churbanov, Trends and prospects for development of chalcogenide fibers for mid-infrared transmission. J. Non-Cryst. Solids 377, 225–230 (2013)

    Article  ADS  Google Scholar 

  44. R. Lin, F. Chen, X. Zhang, Y. Huang, B. Song, S. Dai, X. Zhang, W. Ji, Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system. Opt. Express 25, 25674–25688 (2017)

    Article  ADS  Google Scholar 

  45. V. Rastogi, N. Ashok, A. Kumar, Design and analysis of large-core high GVD planar optical waveguide for dispersion compensation. Appl. Phys. B 105, 821–824 (2011)

    Article  ADS  Google Scholar 

  46. G.F.R. Chen, T. Wang, C. Donnelly, D.T.H. Tan, Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings. Opt. Express 21, 29223–29230 (2013)

    Article  ADS  Google Scholar 

  47. B. Tatian, Fitting refractive-index data with the Sellmeier dispersion formula. Appl. Opt. 23, 4477–4485 (1984)

    Article  ADS  Google Scholar 

  48. R. Cherif, A.B. Salem, M. Zghal, P. Besnard, Th. Chartier, L. Brilland, J. Troles, Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Opt. Eng. 49, 095002-1-095002–6 (2010)

    Article  ADS  Google Scholar 

  49. K. Ahmed, S. Chowdhury, B.K. Paul, S. Sen, Md.S. Islam, Md.I. Islam, S. Asaduzzaman, Ultra high birefringence and lower beat length for square shape PCF: analysis effect on rotation angle and eccentricity. Alex. Eng. J. 57(4), 3683–3691 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been done in Nano-photonics and Optoelectronics Research Laboratory (NORLab) and the authors would like to thank Shahid Rajaee Teacher Training University for supporting of this research project.

Funding

This work was supported by Shahid Rajaee Teacher Training University (SRTTU).

Author information

Authors and Affiliations

Authors

Contributions

RK designed and simulated the structure, and drafted the manuscript. MS reviewed, and edited the manuscript. SO supervised, reviewed, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, R., Seifouri, M. & Olyaee, S. Dual function twin slotted waveguide for optical pulse compression and dispersion compensation in the second and third telecom windows, respectively. Eur. Phys. J. Plus 137, 130 (2022). https://doi.org/10.1140/epjp/s13360-022-02350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02350-1

Navigation