Skip to main content
Log in

Image adder and subtractor based on light storage

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We theoretically propose a scheme for realizing storage-based image adder and subtractor on account of the electromagnetically induced transparency (EIT). The image adder is implemented by directly storing two patterns in a four-level double-\(\varLambda \) system, while the image subtractor is achieved on the basis of the image adder and introducing a phase \(\pi \) to one signal field through the cross-phase modulation. Both analytical analysis and numerical simulation clearly show that, by manipulating the splitter rate of the beam splitters and the Rabi frequencies of the coupling fields, the weighted adder and subtractor of the two patterns can be accomplished. In addition, the influence of the atomic diffusion on the image adder and subtractor is also discussed, and the scheme can be easily extended to the adder and subtractor for multiple images. The current scheme may find important applications in the realization of EIT-based devices for all-optical classical and quantum information processing of images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The numerical simulation data can be obtained by the email of the corresponding author.]

References

  1. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  2. A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photon. 3, 706 (2009)

    Article  ADS  Google Scholar 

  3. K. Heshami, D.G. England, P.C. Humphreys, P.J. Bustard, V.M. Acosta, J. Nunn, B.J. Sussman, Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005 (2016)

    Article  ADS  Google Scholar 

  4. Z.Q. Zhou, S.F. Huelga, C.F. Li, G.C. Guo, Experimental detection of quantum coherent evolution through the violation of Leggett-Garg-Type inequalities. Phys. Rev. Lett. 115, 113002 (2015)

    Article  ADS  Google Scholar 

  5. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001)

    Article  ADS  Google Scholar 

  6. Y.F. Hsiao, P.J. Tsai, H.S. Chen, S.X. Lin, C.C. Hung, C.H. Lee, Y.H. Chen, Y.F. Chen, I.A. Yu, Y.C. Chen, Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett. 120, 183602 (2018)

    Article  ADS  Google Scholar 

  7. S.W. Su, Z.K. Lu, S.C. Gou, W.T. Liao, Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity. Sci. Rep. 6, 35402 (2016)

    Article  ADS  Google Scholar 

  8. J.A. Souza, E. Figueroa, H. Chibani, C.J. Villas-Boas, G. Rempe, Coherent control of quantum fluctuations using cavity electromagnetically induced transparency. Phys. Rev. Lett. 111, 113602 (2013)

    Article  ADS  Google Scholar 

  9. M. Himsworth, P. Nisbet, J. Dilley, G. Langfahl-Klabes, A. Kuhn, EIT-based quantum memory for single photons from cavity-QED. Appl. Phys. B 103, 579 (2011)

    Article  ADS  Google Scholar 

  10. M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009)

    Article  ADS  Google Scholar 

  11. H. de Riedmatten, M. Afzelius, M.U. Staudt, C. Simon, N. Gisin, A solid-state light-matter interface at the single-photon level. Nature (London) 456, 773 (2008)

    Article  ADS  Google Scholar 

  12. K.F. Reim, P. Michelberger, K.C. Lee, J. Nunn, N.K. Langford, I.A. Walmsley, Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107, 053603 (2011)

    Article  ADS  Google Scholar 

  13. K.F. Reim, J. Nunn, V.O. Lorenz, B.J. Sussman, K.C. Lee, N.K. Langford, D. Jaksch, I.A. Walmsley, Towards high-speed optical quantum memories. Nat. Photon. 4, 218 (2010)

    Article  ADS  Google Scholar 

  14. M. Hosseini, B.M. Sparkes, G. Campbell, P.K. Lam, B.C. Buchler, High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun. 2, 174 (2011)

    Article  ADS  Google Scholar 

  15. M. Hosseini, G. Campbell, B.M. Sparkes, P.K. Lam, B.C. Buchler, Unconditional room-temperature quantum memory. Nat. Phys. 7, 794 (2011)

    Article  Google Scholar 

  16. S.W. Su, S.C. Gou, L.Y. Chew, Y.Y. Chang, I.A. Yu, A. Kalachev, W.T. Liao, Setting a disordered password on a photonic memory. Phys. Rev. A 95, 061805(R) (2017)

    Article  ADS  Google Scholar 

  17. W.T. Liao, C.H. Keitel, A. P\(acute{a}\)lffy, All-electromagnetic control of broadband quantum excitations using gradient photon echoes. Phys. Rev. Lett. 113, 123602 (2014)

  18. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature (London) 409, 490 (2001)

    Article  ADS  Google Scholar 

  19. H.H. Wang, Y.F. Fan, R. Wang, L. Wang, D.M. Du, Z.H. Kang, Y. Jiang, J.H. Wu, J.Y. Gao, Slowing and storage of double light pulses in a Pr\(^{3+}\): Y\(_{2}\) SiO\(_{5}\) crystal. Opt. Lett. 34, 2596 (2009)

    Article  ADS  Google Scholar 

  20. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, M. Kozuma, Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100, 093601 (2008)

    Article  ADS  Google Scholar 

  21. J. Appel, E. Figueroa, D. Korystov, M. Lobino, A.I. Lvovsky, Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008)

    Article  ADS  Google Scholar 

  22. K.S. Choi, H. Deng, J. Laurat, H.J. Kimble, Mapping photonic entanglement into and out of a quantum memory. Nature (London) 452, 67 (2008)

    Article  ADS  Google Scholar 

  23. M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, N. Davidson, Storing images in warm atomic vapor. Phys. Rev. Lett. 100(22), 223601 (2008)

    Article  ADS  Google Scholar 

  24. D.S. Ding, J.H. Wu, Z.Y. Zhou, Y. Liu, B.S. Shi, X.B. Zou, G.C. Guo, Multimode image memory based on a cold atomic ensemble. Phys. Rev. A 87(1), 013835 (2013)

    Article  ADS  Google Scholar 

  25. D.S. Ding, J.H. Wu, Z.Y. Zhou, B.S. Shi, X.B. Zou, G.C. Guo, Multiple image storage and frequency conversion in a cold atomic ensemble. Phys. Rev. A 87(5), 053830 (2013)

    Article  ADS  Google Scholar 

  26. G. Heinze, N. Rentzsch, T. Halfmann, Multiplexed image storage by electromagnetically induced transparency in a solid. Phys. Rev. A 86(5), 053837 (2012)

    Article  ADS  Google Scholar 

  27. Y.W. Cho, J.E. Oh, Y.H. Kim, Storage and retrieval of ghost images in hot atomic vapor. Opt. Expr. 20(5), 5809–5816 (2012)

    Article  ADS  Google Scholar 

  28. P.K. Vudyasetu, R.M. Camacho, J.C. Howell, Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Phys. Rev. Lett. 100(12), 123903 (2008)

    Article  ADS  Google Scholar 

  29. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, N. Davidson, Topological stability of stored optical vortices. Phys. Rev. Lett. 98(20), 203601 (2007)

    Article  ADS  Google Scholar 

  30. H.J. Kimble, The quantum internet. Nature (London) 453(7198), 1023–1030 (2008)

    Article  ADS  Google Scholar 

  31. K.K. Park, T.M. Zhao, J.C. Lee, Y.T. Chough, Y.H. Kim, Coherent and dynamic beam splitting based on light storage in cold atoms. Sci. Rep. 6(1), 34279 (2016)

    Article  ADS  Google Scholar 

  32. H.H. Wang, Y.F. Fan, R. Wang, D.M. Du, X.J. Zhang, Z.H. Kang, Y. Jiang, J.H. Wu, J.Y. Gao, Three-channel all-optical routing in a Pr\(^{3+}\): Y\(_{2}\) SiO\(_{5}\) crystal. Opt. Expr. 17(14), 12197–12202 (2009)

    Article  ADS  Google Scholar 

  33. H.H. Wang, X.G. Wei, L. Wang, Y.J. Li, D.M. Du, J.H. Wu, Z.H. Kang, Y. Jiang, J.Y. Gao, Optical information transfer between two light channels in a Pr\(^{3+}\): Y\(_{2}\) SiO\(_{5}\) crystal. Opt. Expr. 15(24), 16044–16050 (2007)

    Article  ADS  Google Scholar 

  34. H.H. Wang, A.J. Li, D.M. Du, Y.F. Fan, L. Wang, Z.H. Kang, Y. Jiang, J.H. Wu, J.Y. Gao, All-optical routing by light storage in a Pr\(^{3+}\): Y\(_{2}\) SiO\(_{5}\) crystal. Appl. Phys. Lett. 93(22), 221112 (2008)

    Article  ADS  Google Scholar 

  35. L. Wang, J.X. Sun, M.X. Luo, Y.H. Sun, X.X. Wang, Y. Chen, Z.H. Kang, H.H. Wang, J.H. Wu, J.Y. Gao, Image routing via atomic spin coherence. Sci. Rep. 5(1), 18179 (2015)

    Article  ADS  Google Scholar 

  36. B. Zhao, Y.A. Chen, X.H. Bao, T. Strassel, C.S. Chuu, X.M. Jin, J. Schmiedmayer, Z.S. Yuan, S. Chen, J.W. Pan, A millisecond quantum memory for scalable quantum networks. Nat. Phys. 5, 95–99 (2008)

    Article  Google Scholar 

  37. E. Biham, B. Huttner, T. Mor, Quantum cryptographic network based on quantum memories. Phys. Rev. A 54(4), 2651 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  38. Z.Y. Shan, Y. Zhang, Quantum-entanglement storage and extraction in quantum network node. Int. J. Quant. Inf. 16(1), 1850009 (2018)

    Article  MathSciNet  Google Scholar 

  39. M. Fleischhauer, J. Otterbach, R.G. Unanyan, Bose-Einstein condensation of stationary-light polaritons. Phys. Rev. Lett. 101, 163601 (2008)

    Article  ADS  Google Scholar 

  40. M. Fleischhauer, M.D. Lukin, Dark-state polaritions in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is subsidized by the Natural Science Foundation of Shandong Province, project No. ZR2021LLZ001, and the National Natural Science Foundation of China, Project Nos. 11604174, 11704214, and 61772295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhui Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Ma, H., Xin, P. et al. Image adder and subtractor based on light storage. Eur. Phys. J. Plus 137, 126 (2022). https://doi.org/10.1140/epjp/s13360-022-02338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02338-x

Navigation