Abstract
This paper presents a novel methodology that the offset boosting is applied to construct discrete multicavity chaotic maps for the first time. To use this method, three new hyperchaotic maps with the hemispherical-cylindrical attractor are built based on the spherical structure. The phase spaces of the new chaotic maps are larger and the dynamics are more complex. The results show that the new maps display complex dynamical characteristics, including hyperchaos, large Lyapunov exponent, high complexity and coexisting attractors. By introducing constants into the equations, the discrete multicavity chaotic maps are obtained successfully. The dynamical performance of the new chaotic maps and distribution of cavities can be easily controlled by adjusting the constants. Furthermore, to verify the feasibility of the applications, the digital circuits of the new chaotic maps are implemented based on DSP technique. Instead of using staircase wave function, the new approach is proposed to extend the attractor phase space, which has great application prospects in secure communication.
Similar content being viewed by others
Data Availability Statement
This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]
References
Y. Li, C. Wang, H. Chen, Opt. Lasers Eng. 90, 238–246 (2017)
C. Li, Z. Li, W. Feng, Y. Tong, J. Du, D. Wei, Int. J. Electron. Commun. 110, 152861 (2019)
Y. Zhou, C. Li, W. Li, H. Li, W. Feng, K. Qian, Nonlinear Dyn. 103(2), 2043–2061 (2021)
Z. Hua, Z. Zhu, S. Yi, Z. Zhang, H. Huang, Inf. Sci. 546, 1063–1083 (2021)
J. Wu, L. Wang, S. Duan, Acta Phys. Sin. 66(3), 030502 (2017)
L. Wang, H. Cheng, Int. J. Entropy 21(10), 960 (2019)
E. Dong, M. Yuan, S. Du, Z. Chen, Appl. Math. Model. 73, 40–71 (2019)
S. Wang, H. Luo, C. Yue, X. Liao, Phys. Lett. A 372(15), 2603–2607 (2008)
L. Yuan, Q. Yang, C. Zeng, Nonlinear Dyn. 73, 439–448 (2013)
F. Chen, Z. Ding, Z. Lu, X. Zeng, Nonlinear Dyn. 94, 2307–2326 (2018)
P. Saha, S. Banerjee, A. Chowdhury, Chaos 326(1–2), 133–139 (2004)
F. Zhu, F. Wang, L. Ye, J. Frankl. Inst. 357(15), 10997–11020 (2020)
S. Hashemi, M. Pourmina, S. Mobayen, M. Alagheband, Int. J. Syst. Sci. 51(11), 1–18 (2020)
T. Geisel, V. Fairen, Phys. Lett. A 105(6), 263–266 (1984)
P. Borcherds, G. Mccauley, Chaos Solitons Fractals 3(4), 451–466 (1993)
D. He, C. He, L. Jiang, H. Zhu, G. Hu, IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(7), 900–906 (2001)
L. Liu, S. Miao, Multimed. Tools Appl. 77, 21445–21462 (2018)
H. Natiq, N. Al-Saidi, M. Said, A. Kilicman, Eur. Phys. J. Plus 133(1), 6 (2018)
H. Natiq, S. Banerjee, M. Ariffin, M. Said, Chaos 29(1), 011103 (2019)
Z. Hua, Y. Zhou, B. Bao, IEEE Trans. Ind. Inf. 99, 1–1 (2019)
M. Yu, K. Sun, W. Liu, S. He, Chaos Solitons Fractals 106, 107–117 (2018)
C. Li, L. Zhang, R. Ou, K. Wong, S. Shu, Nonlinear Dyn. 70(4), 2383–2388 (2012)
D. Arroyo, J. Diaz, F. Rodriguez, Signal Process. 93(5), 1358–1364 (2013)
Y. Xiao, K. Sun, M. Yu, X. Xu, Int. J. Bifurc. Chaos 29(14), 1950194 (2019)
K. Sun, X. Liu, C. Zhu, Chin. J. Electron. 2, 353–356 (2014)
C. Liu, J. Yi, X. Xi, Procedia Eng. 29(1), 957–961 (2012)
L. Chen, W. Pan, R. Wu, K. Wang, Y. He, Chaos Solitons Fractals 85, 22–31 (2016)
S. Yu, J. Lu, G. Chen, X. Yu, IEEE Trans. Circuits Syst. II Express Briefs 58(5), 314–318 (2011)
S. Yu, J. Lu, X. Yu, G. Chen, IEEE Trans. Circuits Syst. I Regul. Pap. 59(5), 1015–1028 (2012)
J. Ma, X. Wu, R. Chu, L. Zhang, Nonlinear Dyn. 76(4), 1–12 (2014)
F. Li, C. Yao, Nonlinear Dyn. 84(4), 2305–2315 (2016)
C. Li, J. Sprott, Optik 127(22), 10389–10398 (2016)
C. Li, X. Wang, G. Chen, Nonlinear Dyn. 90(2), 1335–1341 (2017)
C. Li, T. Lei, X. Wang, G. Chen, Chaos 30(6), 063124 (2020)
S. Zhang, J. Zheng, X. Wang, Z. Zeng, S. He, Nonlinear Dyn. 102, 2821–2841 (2020)
Y. Xiao, K. Sun, S. He, Phys. Scr. 95(6), 065215 (2020)
C. Bandt, B. Pompe, Phys. Rev. Lett. 88(17), 174102 (2002)
W. Chen, J. Zhuang, W. Yu, Z. Wang, Med. Eng. Phys. 31(1), 61–68 (2009)
K. Sun, S. He, Y. He, L. Yin, Acta Phys. Sin. 62(1), 10501 (2013)
Y. Zhang, X. Wang, A. Physica, Stat. Mech. Appl. 402, 104–118 (2014)
M. Hénon, Commun. Math. Phys. 50(1), 69–77 (1976)
Acknowledgements
This work was supported by the Natural Science Foundation of China (Nos. 62071496, 61901530, 62061008), the Natural Science Foundation of Hunan Province (No.2020JJ5767).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liang, Z., Sun, K. & He, S. Design and dynamics of the multicavity hyperchaotic map based on offset boosting. Eur. Phys. J. Plus 137, 51 (2022). https://doi.org/10.1140/epjp/s13360-021-02278-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-021-02278-y