Skip to main content
Log in

Design and dynamics of the multicavity hyperchaotic map based on offset boosting

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper presents a novel methodology that the offset boosting is applied to construct discrete multicavity chaotic maps for the first time. To use this method, three new hyperchaotic maps with the hemispherical-cylindrical attractor are built based on the spherical structure. The phase spaces of the new chaotic maps are larger and the dynamics are more complex. The results show that the new maps display complex dynamical characteristics, including hyperchaos, large Lyapunov exponent, high complexity and coexisting attractors. By introducing constants into the equations, the discrete multicavity chaotic maps are obtained successfully. The dynamical performance of the new chaotic maps and distribution of cavities can be easily controlled by adjusting the constants. Furthermore, to verify the feasibility of the applications, the digital circuits of the new chaotic maps are implemented based on DSP technique. Instead of using staircase wave function, the new approach is proposed to extend the attractor phase space, which has great application prospects in secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. Y. Li, C. Wang, H. Chen, Opt. Lasers Eng. 90, 238–246 (2017)

    Article  Google Scholar 

  2. C. Li, Z. Li, W. Feng, Y. Tong, J. Du, D. Wei, Int. J. Electron. Commun. 110, 152861 (2019)

    Article  Google Scholar 

  3. Y. Zhou, C. Li, W. Li, H. Li, W. Feng, K. Qian, Nonlinear Dyn. 103(2), 2043–2061 (2021)

    Article  Google Scholar 

  4. Z. Hua, Z. Zhu, S. Yi, Z. Zhang, H. Huang, Inf. Sci. 546, 1063–1083 (2021)

    Article  Google Scholar 

  5. J. Wu, L. Wang, S. Duan, Acta Phys. Sin. 66(3), 030502 (2017)

    Article  Google Scholar 

  6. L. Wang, H. Cheng, Int. J. Entropy 21(10), 960 (2019)

    Article  ADS  Google Scholar 

  7. E. Dong, M. Yuan, S. Du, Z. Chen, Appl. Math. Model. 73, 40–71 (2019)

    Article  MathSciNet  Google Scholar 

  8. S. Wang, H. Luo, C. Yue, X. Liao, Phys. Lett. A 372(15), 2603–2607 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Yuan, Q. Yang, C. Zeng, Nonlinear Dyn. 73, 439–448 (2013)

    Article  Google Scholar 

  10. F. Chen, Z. Ding, Z. Lu, X. Zeng, Nonlinear Dyn. 94, 2307–2326 (2018)

    Article  Google Scholar 

  11. P. Saha, S. Banerjee, A. Chowdhury, Chaos 326(1–2), 133–139 (2004)

    Google Scholar 

  12. F. Zhu, F. Wang, L. Ye, J. Frankl. Inst. 357(15), 10997–11020 (2020)

    Article  Google Scholar 

  13. S. Hashemi, M. Pourmina, S. Mobayen, M. Alagheband, Int. J. Syst. Sci. 51(11), 1–18 (2020)

    Article  Google Scholar 

  14. T. Geisel, V. Fairen, Phys. Lett. A 105(6), 263–266 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Borcherds, G. Mccauley, Chaos Solitons Fractals 3(4), 451–466 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. He, C. He, L. Jiang, H. Zhu, G. Hu, IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(7), 900–906 (2001)

    Article  Google Scholar 

  17. L. Liu, S. Miao, Multimed. Tools Appl. 77, 21445–21462 (2018)

    Article  Google Scholar 

  18. H. Natiq, N. Al-Saidi, M. Said, A. Kilicman, Eur. Phys. J. Plus 133(1), 6 (2018)

    Article  Google Scholar 

  19. H. Natiq, S. Banerjee, M. Ariffin, M. Said, Chaos 29(1), 011103 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Z. Hua, Y. Zhou, B. Bao, IEEE Trans. Ind. Inf. 99, 1–1 (2019)

    Google Scholar 

  21. M. Yu, K. Sun, W. Liu, S. He, Chaos Solitons Fractals 106, 107–117 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Li, L. Zhang, R. Ou, K. Wong, S. Shu, Nonlinear Dyn. 70(4), 2383–2388 (2012)

    Article  Google Scholar 

  23. D. Arroyo, J. Diaz, F. Rodriguez, Signal Process. 93(5), 1358–1364 (2013)

    Article  Google Scholar 

  24. Y. Xiao, K. Sun, M. Yu, X. Xu, Int. J. Bifurc. Chaos 29(14), 1950194 (2019)

    Article  Google Scholar 

  25. K. Sun, X. Liu, C. Zhu, Chin. J. Electron. 2, 353–356 (2014)

    Google Scholar 

  26. C. Liu, J. Yi, X. Xi, Procedia Eng. 29(1), 957–961 (2012)

    Google Scholar 

  27. L. Chen, W. Pan, R. Wu, K. Wang, Y. He, Chaos Solitons Fractals 85, 22–31 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Yu, J. Lu, G. Chen, X. Yu, IEEE Trans. Circuits Syst. II Express Briefs 58(5), 314–318 (2011)

    Google Scholar 

  29. S. Yu, J. Lu, X. Yu, G. Chen, IEEE Trans. Circuits Syst. I Regul. Pap. 59(5), 1015–1028 (2012)

    Article  MathSciNet  Google Scholar 

  30. J. Ma, X. Wu, R. Chu, L. Zhang, Nonlinear Dyn. 76(4), 1–12 (2014)

    Article  Google Scholar 

  31. F. Li, C. Yao, Nonlinear Dyn. 84(4), 2305–2315 (2016)

    Article  Google Scholar 

  32. C. Li, J. Sprott, Optik 127(22), 10389–10398 (2016)

    Article  ADS  Google Scholar 

  33. C. Li, X. Wang, G. Chen, Nonlinear Dyn. 90(2), 1335–1341 (2017)

    Article  Google Scholar 

  34. C. Li, T. Lei, X. Wang, G. Chen, Chaos 30(6), 063124 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. S. Zhang, J. Zheng, X. Wang, Z. Zeng, S. He, Nonlinear Dyn. 102, 2821–2841 (2020)

    Article  Google Scholar 

  36. Y. Xiao, K. Sun, S. He, Phys. Scr. 95(6), 065215 (2020)

    Article  ADS  Google Scholar 

  37. C. Bandt, B. Pompe, Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  ADS  Google Scholar 

  38. W. Chen, J. Zhuang, W. Yu, Z. Wang, Med. Eng. Phys. 31(1), 61–68 (2009)

    Article  Google Scholar 

  39. K. Sun, S. He, Y. He, L. Yin, Acta Phys. Sin. 62(1), 10501 (2013)

    Article  Google Scholar 

  40. Y. Zhang, X. Wang, A. Physica, Stat. Mech. Appl. 402, 104–118 (2014)

    Article  Google Scholar 

  41. M. Hénon, Commun. Math. Phys. 50(1), 69–77 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 62071496, 61901530, 62061008), the Natural Science Foundation of Hunan Province (No.2020JJ5767).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Sun, K. & He, S. Design and dynamics of the multicavity hyperchaotic map based on offset boosting. Eur. Phys. J. Plus 137, 51 (2022). https://doi.org/10.1140/epjp/s13360-021-02278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02278-y

Navigation