Skip to main content
Log in

Study of \(p_{T}\) spectra of light particles using modified Hagedorn function and cosmic rays Monte Carlo event generators in proton–proton collisions at \(\sqrt{s}\) = 900 GeV

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Transverse momentum spectra (\(p_T\)) of charged particles including \(\pi ^{\pm }\), \(K^{\pm }\) and (anti-)protons measured by ALICE experiment in the \(p_T\) range of 0.1–2.5 GeV/c and \(|\eta |\) < 0.5 are studied in pp collisions at \(\sqrt{s}\) = 900 GeV using modified Hagedorn function with embedded transverse flow velocity and are compared to the predictions of EPOS–LHC, Pythia, QGSJET and Sibyll models. We find that the average transverse flow velocity (\(\beta _T\)) decreases with increasing the mass of the particle, while the kinetic freeze-out temperature (\(T_{0}\)) extracted from the function increases with the particle’s mass. The former varies from (0.36 ± 0.01) c to (0.25 ± 0.01) c for \(\pi ^{\pm }\) to protons, while the latter from (76 ± 6) MeV to (95 ± 5) MeV, respectively. The fit of the models predictions also yields the same values for \(T_{0}\) and \(\beta _T\) as the experimental data. The only difference is in the values of n and \(N_0\) which yields different values for different models. The EPOS–LHC, Pythia and QGSJET models reproduce the data in most of the \(p_{T}\) range for \(\pi ^{\pm }\), EPOS–LHC and Sibyll for \(K^{\pm }\) up to 1.5 GeV/c and EPOS–LHC for protons up to 1.6 GeV/c. The model simulations also reproduced the behavior of increasing average transverse momentum with mass reported by the ALICE experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Akiba et al., J. Phys. G 43, 110201 (2016)

    Article  ADS  Google Scholar 

  2. C.M.S. Collaboration, Eur. Phys. J. C 75, 237 (2015). https://doi.org/10.1140/epjc/s10052-015-3435-4

    Article  Google Scholar 

  3. ALICE Collaboration, Phys. Lett. B 736, 196 (2014). https://doi.org/10.1016/j.physletb.2014.07.011

    Article  ADS  Google Scholar 

  4. E. Schnedermann, J. Solfrank, Phys. Rev. C 48, 2462 (1993)

    Article  ADS  Google Scholar 

  5. STAR Collab, B. I. Abelev et al., Phys. Rev. C 81: 024911, (2010)

  6. H.L. Lao et al., Eur. Phys. J. A 53, 44 (2017)

    Article  ADS  Google Scholar 

  7. T. Bhattacharyya et al., Eur. Phys. J. A 52, 30 (2016)

    Article  ADS  Google Scholar 

  8. P.K. Khandai et al., J. Phys. G 41, 025105 (2014)

    Article  ADS  Google Scholar 

  9. Kh.K. Olimov et al., Mod. Phys. Lett. A 35, 2050237 (2020)

    Article  ADS  Google Scholar 

  10. Kh.K. Olimov et al., Mod. Phys. Lett. A 35, 2050115 (2020)

    Article  ADS  Google Scholar 

  11. B. Abelev et al., ALICE Collaboration. Phys. Rev. C 88, 044910 (2013)

  12. M. Ajaz et al., Int. J. Theor. Phys. 59, 3338 (2020)

    Article  Google Scholar 

  13. M. Ajaz, M. Tufail, Y. Ali, Arab. J. Sci. Eng. 45, 411 (2020). https://doi.org/10.1007/s13369-019-04224-8

    Article  Google Scholar 

  14. R. Khan, M. Ajaz, Mod. Phys. Lett. A 35, 2050190 (2020)

    Article  ADS  Google Scholar 

  15. M. Ajaz, R. Khan, Y. Ali, M.K. Suleymanov, Mod. Phys. Lett. A 35, 1950349 (2020)

    Article  ADS  Google Scholar 

  16. S. Ullah, M. Ajaz, Z. Wazir, Y. Ali, K.H. Khan, H. Younis, Sci. Rep. 9, 11811 (2019)

    Article  ADS  Google Scholar 

  17. S. Ullah, M. Ajaz, Y. Ali, Europhys. Lett. 123, 31001 (2018)

    Article  ADS  Google Scholar 

  18. S. Ullah, Y. Ali, M. Ajaz, U. Tabassam, Q. Ali, Int. J. Mod. Phys. A 33, 1850108 (2018)

    Article  ADS  Google Scholar 

  19. K. Aamodt et al., ALICE Collaboration, Eur. Phys. J. C 71, 1655 (2011)

  20. T. Pierog, I. Karpenko, J.M. Katzy, E. Yatsenko, K. Werner, Phys. Rev. C 92, 034906 (2015)

    Article  ADS  Google Scholar 

  21. T. Sjostrand, S. Mrenna, P. Skand, Pythia 6.4 Physics and manual. JHEP 05, 026 (2006)

    Article  ADS  Google Scholar 

  22. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011)

    Article  ADS  Google Scholar 

  23. S. Ostapchenko, Nucl. Phys. B Proc. Suppl. 151, 143–146 (2006)

    Article  ADS  Google Scholar 

  24. F. Riehn et al., Phys. Rev. D 102, 063002 (2020)

    Article  ADS  Google Scholar 

  25. K. Werner et al., Phys. Rev. C 74, 044902 (2006)

    Article  ADS  Google Scholar 

  26. K. Werner, Phys. Rev. Lett. 98, 152301 (2007)

    Article  ADS  Google Scholar 

  27. A.B. Kaidalov, K.A. Ter-Martirosyan, Sov. J. Nucl. Phys. 39, 979 (1984)

    Google Scholar 

  28. P.K. Khandai et al., J. Phys. G: Nucl. Part. Phys. 41, 025105 (2014)

    Article  ADS  Google Scholar 

  29. M. Waqas et al., Indian J. Phys. 93, 1329–1343 (2019)

    Article  ADS  Google Scholar 

  30. M. Waqas et al., Eur. Phys. J. A 56, 188 (2020)

    Article  ADS  Google Scholar 

  31. M. Waqas et al., Int. J. Mod. Phys. E 30, 2150061 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Ajaz et al., Results Phys. 30, 104790 (2021)

    Article  Google Scholar 

  33. M. Waqas et al., J. Phy. G 48, 075108 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xiong Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajaz, M., Waqas, M., Peng, G.X. et al. Study of \(p_{T}\) spectra of light particles using modified Hagedorn function and cosmic rays Monte Carlo event generators in proton–proton collisions at \(\sqrt{s}\) = 900 GeV. Eur. Phys. J. Plus 137, 52 (2022). https://doi.org/10.1140/epjp/s13360-021-02271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02271-5

Navigation