Skip to main content
Log in

Introducing a general time machine solution and analysis of a vacuum spacetime generating closed timelike curves

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a general time machine spacetime in which closed timelike curves are formed at some particular instant of time from an initial spacelike hypersurface from well-behaved initial conditions. We show that a known result in the literature can be obtained as a particular case of the general spacetime. Finally, from the generalized spacetime, we obtain a vacuum solution exhibiting causality violation. The physical properties of this solution are explored in some detail. The formation of closed timelike curves is analogous to that of the two-dimensional Misner space metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P.J. Nahin, Time Machines: Time Travel in Physics, Metaphysics and Science Fiction (Springer, New York, 1999)

    Book  Google Scholar 

  2. S.W. Hawking, Phys. Rev. D 46, 603 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Friedman, M.S. Morris, I.D. Novikov, F. Echeverria, G. Klinkhammer, K.S. Thorne, U. Yurtsever, Phys. Rev. D 42, 1915 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  4. D.D. Solnyshkov, G. Malpuech, Phys. Rev. B 103, 054303 (2021)

    Article  ADS  Google Scholar 

  5. G. Tobar, F. Costa, Class. Quantum Grav. 37, 205011 (2020)

    Article  ADS  Google Scholar 

  6. K. Gödel, Rev. Mod. Phys. 21, 447 (1949)

    Article  ADS  Google Scholar 

  7. W.J. van Stockum, Proc. R. Soc. Edin. 57, 135 (1938)

    Article  Google Scholar 

  8. F.J. Tipler, Phys. Rev. D 9, 2203 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.R. Gott, Phys. Rev. Lett. 66, 1126 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Ori, Y. Soen, Phys. Rev. D 49, 3990 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Soen, A. Ori, Phys. Rev. D 54, 4858 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Ori, Phys. Rev. Lett. 95, 021101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Ori, Phys. Rev. D 76, 044002 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Ahmed, B.B. Hazarika, D. Sarma, Eur. Phys. J. Plus 131, 230 (2016)

    Article  Google Scholar 

  15. B.B. Hazarika, Eur. Phys. J. Plus 136, 600 (2021)

    Article  Google Scholar 

  16. D. Sarma, F. Ahmed, M. Patgiri, Adv. High Energy Phys. 2016, 2546186 (2016)

    Article  Google Scholar 

  17. F. Ahmed, B.B. Hazarika, D. Sarma, Adv. High Energy Phys. 2020, 8265872 (2020)

    Google Scholar 

  18. S. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973)

    Book  Google Scholar 

  19. C. W. Misner, in Relativity Theory and Astrophysics I: Relativity and Cosmology, ed. by J. Ehlers, Lectures in Applied Mathematics, vol. 8 (American Mathematical Society, 1967)

  20. M. Mars, J.M.M. Senovilla, Class. Quantum Grav. 10, 1633 (1993)

    Article  ADS  Google Scholar 

  21. M. Mars, J.M.M. Senovilla, Class. Quantum Grav. 12, 2071 (1995)

    Article  ADS  Google Scholar 

  22. M.A.H. MacCallum, Gen. Rel. Grav. 30, 131 (1998)

    Article  ADS  Google Scholar 

  23. J. Carot, J.M.M. Senovilla, R. Vera, Class. Quantum Grav. 16, 3025 (1999)

    Article  ADS  Google Scholar 

  24. J. Carot, Class. Quantum Grav. 14, 2675 (2000)

    Article  ADS  Google Scholar 

  25. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions to Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)

  26. J.B. Griffiths, J. Podolsky, Exact Space-Times in Einstein’s General Relativity (Cambridge University Press, Cambridge, 2009)

  27. W. Kinnersley, J. Math. Phys. 10, 1195 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  28. B. Carter, Phys. Lett. A 26, 399 (1968)

    Article  ADS  Google Scholar 

  29. R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  30. C.W. Misner, A.H. Taub, Sov. Phys. JETP 28, 122 (1969)

    ADS  Google Scholar 

  31. J.F. Plebański, M. Demiański, Ann. Phys. (NY) 98, 98 (1976)

    Article  ADS  Google Scholar 

  32. M.S. Morris, K.S. Thorne, U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988)

    Article  ADS  Google Scholar 

  33. F. S. N. Lobo, Exotic Solutions in General Relativity: Traversable Wormholes and “Warp Drive” Spacetimes (2021). arXiv:0710.4474

  34. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, B.B. Introducing a general time machine solution and analysis of a vacuum spacetime generating closed timelike curves. Eur. Phys. J. Plus 137, 13 (2022). https://doi.org/10.1140/epjp/s13360-021-02241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02241-x

Navigation