Skip to main content
Log in

Radon exhalation and transfer processes in aqueous media

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present work gives a proof-of-concept for the complex factors that affect radon-in-water measurements through its progeny activities. Mathematical model was formulated, and an experiment was performed on a solution containing thorium and uranium series to identify the conditions for radon-in-water transfer. The experiment was performed on a solution containing thorium and uranium series at pH 5.5, isolated for 2 y, just measured before and repeatedly after exposing its surface to the ambient atmosphere. The measurement setup was carefully designed to avoid turbulence in consequence to rise velocity of these gaseous bubbles. During isolation time, radon found to accumulate in voids within the soft medium of water, and radon progeny may be re-dissolved in the medium in a non-homogenous manner that depends on the properties and geometry of the soft solution and existence of carrier gases such as emanating helium and water vapor. The rate of radon exhalation from the surface of the liquid was determined. The present results threw doubt on the activities measured assuming equilibrium between radon concentration and its progeny due to its dependence on geometry and ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Marschke, W. Rish, J. Mauro, J. Air Waste Manag. Assoc. 69(12), 1479 (2019). https://doi.org/10.1080/10962247.2019.1670281

    Article  Google Scholar 

  2. Y. Liu, J.J. Jiao, R. Mao, X. Luo, W. Liang, C.E. Robinson, Water Resour. Res. 55(12), 10282 (2019). https://doi.org/10.1029/2019WR024849

    Article  ADS  Google Scholar 

  3. H.S. Eissa, M.E. Medhat, S.A. Said, E.K. Elmaghraby, Radiat. Prot. Dosim. 147(4), 533 (2011). https://doi.org/10.1093/rpd/ncq498

    Article  Google Scholar 

  4. E.K. Elmaghraby, Y.A. Lotfy, Appl. Radiat. Isotopes 67(1), 208 (2009). https://doi.org/10.1016/j.apradiso.2008.07.003

    Article  Google Scholar 

  5. S. Cockenpot, C. Claude, O. Radakovitch, J. Environ. Radioact. 143, 58 (2015). https://doi.org/10.1016/j.jenvrad.2015.02.007

    Article  Google Scholar 

  6. K. Freyer, H. Treutler, J. Dehnert, W. Nestler, J. Environ. Radioact. 37(3), 327 (1997). https://doi.org/10.1016/S0265-931X(96)00102-6

    Article  Google Scholar 

  7. A. Noverques, B. Juste, M. Sancho, B. Garcia-Fayos, G. Verdu, Radiat. Phys. Chem. 171, 108761 (2020). https://doi.org/10.1016/j.radphyschem.2020.108761

    Article  Google Scholar 

  8. M. Taniguchi, H. Dulai, K.M. Burnett, I.R. Santos, R. Sugimoto, T. Stieglitz, G. Kim, N. Moosdorf, W.C. Burnett, Front. Environ. Sci. 7, 141 (2019). https://doi.org/10.3389/fenvs.2019.00141

    Article  Google Scholar 

  9. H. Dulaiova, R. Peterson, W.C. Burnett, D. Lane-Smith, J. Radioanal. Nucl. Chem. 263, 361 (2005). https://doi.org/10.1007/s10967-005-0063-8

    Article  Google Scholar 

  10. A. Maier, U. Weber, J. Dickmann, J. Breckow, P. van Beek, D. Schardt, G. Kraft, C. Fournier, Nucl. Instrum. Meth. B 416, 119 (2018). https://doi.org/10.1016/j.nimb.2017.12.008

    Article  ADS  Google Scholar 

  11. J. Mazur, S. Gugula, K. Danylec, K. Kozak, D. Grzadziel, Radiat. Meas. 107, 80 (2017). https://doi.org/10.1016/j.radmeas.2017.09.010

    Article  Google Scholar 

  12. Y. Ye, X. Dai, D. Ding, Y. Zhao, J. Environ. Radioact. 165, 219 (2016). https://doi.org/10.1016/j.jenvrad.2016.10.009

    Article  Google Scholar 

  13. P. Szajerski, J. Celinska, H. Bem, A. Gasiorowski, R. Anyszka, P. Dziugan, Constr. Build. Mater. 198, 390 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.262

    Article  Google Scholar 

  14. A. Mayer, B. Nguyen, O. Banton, O. Hydrogeol. J. 24, 1775 (2016). https://doi.org/10.1007/s10040-016-1424-9

  15. Y. Ye, G. Chen, X. Dai, C. Huang, R. Yang, K.J. Kearfott, Environ. Sci. Pollut. Res. 26, 25702 (2019). https://doi.org/10.1007/s11356-019-05788-6

    Article  Google Scholar 

  16. M. Havelka, Appl. Radiat. Isotopes 67(5), 860 (2009). 5th International Conference on Radionuclide Metrology - Low-Level Radioactivity Measurement Techniques ICRM-LLRMT’08 https://doi.org/10.1016/j.apradiso.2009.01.047

  17. A. Schmidt, M. Schlueter, M. Melles, M. Schubert, Appl. Radiat. Isotopes 66(12), 1939 (2008). https://doi.org/10.1016/j.apradiso.2008.05.005

    Article  Google Scholar 

  18. J. Kessongo, Y. Bahu, M. Inacio, L. Peralta, S. Soares, Radiat. Phys. Chem. 173, 108951 (2020). https://doi.org/10.1016/j.radphyschem.2020.108951

    Article  Google Scholar 

  19. T.A. Przylibski, M. Kaczorowski, L. Fijałkowska-Lichwa, D. Kasza, R. Zdunek, R. Wronowski, Appl. Radiat. Isot. 163, 108967 (2020). https://doi.org/10.1016/j.apradiso.2019.108967

    Article  Google Scholar 

  20. B. Peterman, C. Perkins, Radiat. Prot. Dosim. 22(1), 5 (1988). https://doi.org/10.1093/oxfordjournals.rpd.a080081

    Article  Google Scholar 

  21. H. Hassan, W. Madcour, E.K. Elmaghraby, Mater. Chem. Phys. 234, 55 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.081

    Article  Google Scholar 

  22. H. Hassan, E.K. Elmaghraby, Can. J. Chem. 90, 1 (2012). https://doi.org/10.1139/v2012-058

    Article  Google Scholar 

  23. H. El-Said, H.E. Ramadan, E.K. Elmaghraby, M. Amin, Radiochim. Acta 106(8), 685 (2017). https://doi.org/10.1515/ract-2017-2885

    Article  Google Scholar 

  24. T. Vidmar, G. Kanisch, G. Vidmar, Appl. Radiat. Isotopes 69(6), 908 (2011). https://doi.org/10.1016/j.apradiso.2011.02.042

    Article  Google Scholar 

  25. J. Nikolic, T. Vidmar, D. Jokovic, M. Rajacic, D. Todorovic, Nucl. Instrum. Methods Phys. Res. A 763, 347 (2014). https://doi.org/10.1016/j.nima.2014.06.044

    Article  ADS  Google Scholar 

  26. M. Schubert, A. Paschke, E. Lieberman, W.C. Burnett, Environ. Sci. Technol. 46(7), 3905 (2012). https://doi.org/10.1021/es204680n

    Article  ADS  Google Scholar 

  27. A. Ali, E.K. Elmaghraby, Nucl. Instrum. Meth. B 471, 63 (2020). https://doi.org/10.1016/j.nimb.2020.03.028

    Article  ADS  Google Scholar 

  28. S. Singh, A. Jain, J.K. Tuli, Nuclear Data Sheets 112(11), 2851 (2011). https://doi.org/10.1016/j.nds.2011.10.002

    Article  ADS  Google Scholar 

  29. B. Singh, M. Basunia, M. Martin, E. McCutchan, I. Bala, R. Caballero-Folch, R. Canavan, R. Chakrabarti, A. Chekhovska, M. Grinder, S. Kaim, D. Kanjilal, D. Kasperovych, M. Kobra, H. Koura, S. Nandi, A. Olacel, A. Singh, B. Tee, Nuclear Data Sheets 160, 405 (2019). https://doi.org/10.1016/j.nds.2019.100524

    Article  ADS  Google Scholar 

  30. S.C. Wu, Nuclear Data Sheets 110(3), 681 (2009). https://doi.org/10.1016/j.nds.2009.02.002

    Article  ADS  Google Scholar 

  31. K. Abusaleem, Nuclear Data Sheets 116, 163 (2014). https://doi.org/10.1016/j.nds.2014.01.002

    Article  ADS  Google Scholar 

  32. S. Singh, B. Singh, Nuclear Data Sheets 130, 127 (2015). https://doi.org/10.1016/j.nds.2015.11.003

    Article  ADS  Google Scholar 

  33. E. Browne, Nuclear Data Sheets 104(2), 427 (2005). https://doi.org/10.1016/j.nds.2005.01.002

    Article  ADS  Google Scholar 

  34. M. Martin, Nuclear Data Sheets 108(8), 1583 (2007). https://doi.org/10.1016/j.nds.2007.07.001

    Article  ADS  Google Scholar 

  35. E. Elmaghraby, Int. J. Nucl. Energy Sci. Technol. 10(3), 234 (2016). https://doi.org/10.1504/IJNEST.2016.078959

    Article  Google Scholar 

  36. G.B. Dowling, F.C.W. Olson, Sci. 146(3650), 1492 (1964). https://doi.org/10.1126/science.146.3650.1492

    Article  ADS  Google Scholar 

  37. C.S. Martens, G.W. Kipphut, J.V. Klump, Sci. 208(4441), 285 (1980). https://doi.org/10.1126/science.208.4441.285

    Article  ADS  Google Scholar 

  38. D.M. Himmelblau, Chem. Rev. 64(5), 527 (1964). https://doi.org/10.1021/cr60231a002

    Article  Google Scholar 

  39. E.P. Sanjon, A. Maier, G. Hinrichs, A. Kraft, B. Drossel, C. Fournier, Sci. Rep. 9, 10768 (2019). https://doi.org/10.1038/s41598-019-47236-y

    Article  ADS  Google Scholar 

  40. Y. Akovali, Nuclear Data Sheets 71(1), 181 (1994). https://doi.org/10.1006/ndsh.1994.1006

    Article  ADS  Google Scholar 

  41. H. Bateman, Cambr. Phil Soc. Proc. 5, 423 (1910)

    Google Scholar 

  42. T.R. England, CINDER–A one point depletion and fission product program. Technical Report WAPD-TM-334, Bettis Atomic Power Laboratory Pittsburgh, Pennsylvania (1962). https://doi.org/10.2172/4676197. https://www.osti.gov/biblio/4676197

  43. S.A. Kulyukhin, L.V. Mizina, I.A. Rumer, E.P. Krasavina, Radiochem. 50, 298 (2008). https://doi.org/10.1134/S1066362208030156

    Article  Google Scholar 

  44. G. Fetter, M.T. Olguin, P. Bosch, V.H. Lara, S. Bulbulian, J. Radioanal. Nucl. Chem. 241(3), 595 (1999). https://doi.org/10.1007/BF02347218

    Article  Google Scholar 

  45. C.A. Degueldre, R.J. Dawson, V. Najdanovic-Visak, Sustain. Energy Fuels 3, 1693 (2019). https://doi.org/10.1039/C8SE00610E

    Article  Google Scholar 

  46. A.N. Duman, S.G. Colak, M.O. Alas, O. Er, A. Tuncel, I. Ozturk, F. Yurt, R. Genc, K. Ocakoglu, Mater. Today Commun. 26, 102167 (2021). https://doi.org/10.1016/j.mtcomm.2021.102167

    Article  Google Scholar 

  47. E.K. Elmaghraby, M. Tohamy, M. Comsan, Appl. Radiat. Isot. 148, 19 (2019). https://doi.org/10.1016/j.apradiso.2019.03.014

    Article  Google Scholar 

  48. M. Tohamy, E.K. Elmaghraby, M.N.H. Comsan, Phys. Scr. 96(4), 045304 (2021). https://doi.org/10.1088/1402-4896/abe258

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The publication of the present manuscript was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsayed K. Elmaghraby.

Ethics declarations

Conflict of interest

The authors declare that they have no known source for conflict of interest with any person.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmaghraby, E.K., Ataalla, N.N., Afifi, M.B. et al. Radon exhalation and transfer processes in aqueous media. Eur. Phys. J. Plus 136, 1217 (2021). https://doi.org/10.1140/epjp/s13360-021-02231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02231-z

Navigation