Skip to main content
Log in

Thermo-fluid porosity-related effects in the magnetic hyperthermia

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The efficient thermal damage of the malignant tissues (tumors) is the main goal in the Magnetic Hyperthermia method. The magnetic nanoparticles (MNPs) transport is strongly related to the tissue parameters as the porosity and the permeability. When an external time-dependent magnetic field is applied, the spatial and temporal distributions of MNPs have a fundamental role in the thermal damage of the malignant tissues. This paper describes the influence of the tissues’ porosity on the therapeutic temperature field which determines the thermal damage of the malignant tissues. The supplementary effects related to the spatial re-distribution of the nanoparticles as a result of thermal damage-dependent porosity were discussed for the case of the constant tissue porosity. The optimum (MNP) doses needed to obtain the therapeutic temperature range (42 ÷ 46 °C) are computed for the malignant tissues. In the numerical model, the frequency f(kHz) and amplitude of the AC magnetic field are optimized to obtain the therapeutic temperature range with the maximum thermal damage. The model contains a complex analysis regarding the injection of the ferrofluid, the spatial distribution of MNPs (after their injection) and the thermal damage of the malignant tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data that supports the findings of this study are available within the article.

References

  1. S. Dutz, R. Hergt, Int. J. Hyperth. 29, 790 (2013)

    Article  Google Scholar 

  2. J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 109, 083921 (2011)

    Article  ADS  Google Scholar 

  3. Y.-D. Tang, T. Jin, R.C.C. Flesch, Appl. Math. Model. 83, 122–135 (2020)

    Article  MathSciNet  Google Scholar 

  4. M. Lahonian, A.A. Golneshan, IEEE Trans. Nanobiosci. 10, 262 (2011)

    Article  Google Scholar 

  5. I. Astefanoaei, A. Stancu, J. Appl. Phys. 122, 164701 (2017)

    Article  Google Scholar 

  6. M. Salloum, R. Ma, L. Zhu, Int. J. Hyperth. 25, 309 (2009)

    Article  Google Scholar 

  7. I. Aștefănoaei, A. Stancu, H. Chiriac, Eur. Phys. J. Plus 132(2), 1–12 (2017)

    Article  Google Scholar 

  8. M. Singh, R. Ma, L. Zhu, in Theoretical Evaluation of Temperature Elevation, Thermal Damage, Tumor Porosity Enhancement and Magnetic Nanoparticle Migration in Tumors during Local Heating, Conference Paper – June (2019)

  9. N.T. Wright, On a relationship between the Arrhenius parameters from thermal damage studies. J. Biomech. Eng. 125, 300–304 (2003)

    Article  Google Scholar 

  10. A.W. El-Kareh, S.L. Braunstein, T.W. Secomb, Effect of cell arrangement and interstitial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophys. J. 64(5), 1638–1646 (1993)

    Article  ADS  Google Scholar 

  11. A. Zhang, X. Mi, G. Yang, L.X. Xu, Numerical study of thermally targeted liposomal drug delivery in tumor. J Heat Transfer 131(4), 043209–043219 (2009)

    Article  Google Scholar 

  12. Y. Tang, R.C.C. Flesch, T. Jin, J. Phys. D Appl. Phys. 51(3), 035401 (2017)

    Article  ADS  Google Scholar 

  13. COMSOL Multiphysics, Reference Manual, Version 5.5.

  14. Y. Tang, R. C. C. Flesch, T. Jin, Y. Gao, M. He J. M. M. M. 517(167391) (2021)

  15. Y. Tang, R.C.C. Flesch, T. Jin, J. Appl. Phys. 122, 034702 (2017)

    Article  ADS  Google Scholar 

  16. I. Astefanoaei, I. Dumitru, H. Chiriac, A. Stancu, IEEE Trans Magn. 50, 11 (2014)

    Article  Google Scholar 

  17. I. Astefanoaei, A. Stancu, J. Appl. Phys. 125, 194701 (2019)

    Article  ADS  Google Scholar 

  18. M. Salloum, R.H. Ma, D. Weaks, L. Zhu, Int. J. Hyperth. 24, 337 (2008)

    Article  Google Scholar 

  19. I. Astefanoaei and A. Stancu, “Numerical simulations in engineering and science,” in Modeling of the Temperature Field in the Magnetic Hyperthermia, edited by S. P. Rao (IntechOpen, 2018).

  20. I. Astefanoaei, H. Chiriac, A. Stancu, Eur. Phys. J. Plus 131(9), 1–9 (2016)

    Article  Google Scholar 

  21. A. Golneshan, M. Lahonian, Int. J. Hyperth. 27, 266 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iordana Astefanoaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astefanoaei, I., Stancu, A. Thermo-fluid porosity-related effects in the magnetic hyperthermia. Eur. Phys. J. Plus 136, 1216 (2021). https://doi.org/10.1140/epjp/s13360-021-02229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02229-7

Navigation