Skip to main content
Log in

Infinitely many conservation laws and Darboux-dressing transformation for the three-coupled fourth-order nonlinear Schrödinger equations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we derive the infinitely many conservation laws through the Lax pair of the three-coupled fourth-order nonlinear Schrödinger equations and construct some semi-rational solutions by the Darboux-dressing transformation. These solutions contain breather waves, vector rogue waves, and the interaction between breather waves and vector rogue waves. Moreover, the dynamical behaviors of semi-rational solutions are discussed via some graphics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.M. Moslem, P. Shukla, B. Eliasson, EPL 96, 25002 (2011)

    Article  ADS  Google Scholar 

  2. R. Guo, B. Tian, X. Lü, H.Q. Zhang, W.J. Liu, Comp. Math. Math. Phys. 52(4), 565–577 (2012)

    Article  Google Scholar 

  3. L. Stenflo, P. Shukla, J. Plasma. Phys. 75, 841–847 (2009)

    Article  ADS  Google Scholar 

  4. A. Chabchoub, N. Hoffmann, H. Branger, C. Kharif, N. Akhmediev, Phys. Fluids. 25, 101704 (2013)

    Article  ADS  Google Scholar 

  5. G.P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995)

    MATH  Google Scholar 

  6. D. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  7. D.R. Solli, C. Ropers, B. Jalali, Phys. Rev. Lett. 101(23), 233902 (2008)

    Article  ADS  Google Scholar 

  8. Z. Du, B. Tian, Q.X. Qu, H.P. Chai, X.Y. Wu, Superlattice. Microst. 112, 362–373 (2017)

    Article  ADS  Google Scholar 

  9. Z.Y. Yan, Commun. Theor. Phys. 54, 947–949 (2010)

    Article  ADS  Google Scholar 

  10. Z.Y. Yan, Fuel Energy Abstracts 375(48), 4274–4279 (2011)

    Google Scholar 

  11. A.C. Newell, SIAM, Philadelphia. (1985)

  12. M.J. Ablowitz, H. Segur, SIAM, Philadelphia (1981)

  13. S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons: The Inverse Scattering Method. (1984)

  14. M.J. Ablowitz, Z.H. Musslimani, Nonlinearity 29(3), 915–946 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Hirota, J. Satsuma, Phys. Lett. A. 85, 407–408 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. L. Liu, B. Tian, W.R. Sun, H.L. Zhen, W.R. Shan, Commun. Nonlinear. Sci. 39(39), 545–555 (2016)

    Article  Google Scholar 

  17. J.J. Su, Y.T. Gao, Eur. Phys. J. Plus. 132(1), 53 (2017)

    Article  Google Scholar 

  18. G. Mu, Z. Qin, R. Grimshaw, N. Akhmediev, Physica. D. 402, 132252 (2020)

    Article  MathSciNet  Google Scholar 

  19. L. Ling, L.C. Zhao, B. Guo, Nonlinearity 28(9), 3243–3261 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. C.R. Zhang, B. Tian, Q.X. Qu, L. Liu, H.Y. Tian, Angew. Math. Phys. 71(1), 18 (2020)

    Article  Google Scholar 

  21. T. Xu, G. He, Nonlinear. Dynam. 100(3), 2823–2837 (2020)

    Article  MathSciNet  Google Scholar 

  22. G. Zhang, Z. Yan, Commun. Nonlinear. Sci. 62, 117–133 (2018)

    Article  Google Scholar 

  23. X.B. Wang, B. Han, Appl. Math. Lett. 99, 105987 (2020)

    Article  MathSciNet  Google Scholar 

  24. X.W. Yan, J. Zhang, Nonlinear. Dynam. 100(4), 3733–3743 (2020)

    Article  Google Scholar 

  25. S.S. Veni, M.M. Latha, Phys. Scripta. 86(2), 25003 (2012)

    Article  Google Scholar 

  26. W.R. Sun, B. Tian, Y.F. Wang, H.L. Zhen, Eur. Phys. J. D 69(6), 146 (2015)

    Article  ADS  Google Scholar 

  27. Z. Du, B. Tian, H.P. Chai, Y.Q. Yuan, Commun. Nonlinear. Sci. 67, 49–59 (2019)

    Article  Google Scholar 

  28. L.C. Zhao, J. Liu, Phys. Rev. E. 87(1), 13201 (2013)

    Article  ADS  Google Scholar 

  29. X.B. Wang, B. Han, EPL 126(1), 15001 (2019)

    Article  Google Scholar 

  30. F. Baronio, A. Degasperis, M. Conforti, S. Wabnitz, Phys. Rev. Lett. 109(4), 044102 (2012)

    Article  ADS  Google Scholar 

  31. M.J. Ablowitz, Nonlinear Dispersive Waves (Cambridge Univ. Press, Cambridge, 2011)

    Book  Google Scholar 

  32. Z. Du, B. Tian, H.P. Chai, X.H. Zhao, Wave. Random. Complex. 31, 1051–1071 (2019)

    Article  ADS  Google Scholar 

  33. W. Meng, B. Tian, C.C. Hu, C.C. Liu, Appl. Math. Lett. 119, 106936 (2021)

    Article  Google Scholar 

  34. G. Mu, Z. Qin, J. Phys. Soc. Jpn. 83(10), 104001 (2014)

    Article  ADS  Google Scholar 

  35. G. Mu, Z. Qin, R. Grimshaw, SIAM. J. Appl. Math. 75(1), 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  36. T.B. Benjamin, J.E. Feir, J. Fluid. Mech. 27(3), 417–430 (1967)

    Article  ADS  Google Scholar 

  37. Y. Ma, Stud. App. Math. 60(1), 43–58 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the editors and reviewers for their valuable comments. This work is supported by National Natural Science Foundation of China (Nos.12001241, 11731014 & 71690242), Basic Research Program of Jiangsu Province (No. BK20200885) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX21_1314).

Funding

Funding provided by young science and technology talents promotion project for Zhenjiang Science and Technology Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Tian.

Appendix

Appendix

The expressions of \(g_{i}\) \((i=1,2,\ldots , 24)\) are as follows.

$$\begin{aligned}&g_{1}=4\varsigma _{1}h_{1},~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g_{2}=-3\varsigma _{1}h_{1},\\&g_{3} =\varsigma _{1}\mathrm {i}\sin (\omega t) h_{1},~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g_{4} =4\varsigma _{2} h_{1},\\&g_{5}=-3 \varsigma _{2} h_{1},~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g_{6} =\varsigma _{2} \sin (\omega t) h_{1},\\&g_{7} =4 a_{i}^{2}\varsigma _{3} h_{1},~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g_{8} = -3a_{i}^{2}\varsigma _{3} h_{1} -2 (\omega -a_{i}^{2}) \mathrm {i} \sin (\omega t) h_{2} ,\\&g_{9} =a_{i}^{2}\varsigma _{3} \sin (\omega t)\mathrm {i} h_{1}- (\omega -a_{i}^{2}) h_{2} ,~~~~~~~~~~~~~~g_{10} =-4\mathrm {i} h_{1},\\&g_{11} =3\varsigma _{3} h_{1}-2\mathrm {i} \sin (\omega t) h_{2},~~~~~~~~~~~~~~~~~~~~~~~~~~~g_{12} =- \mathrm {i} \sin (\omega t) \varsigma _{3} h_{1}- h_{2},\\&g_{13}=4 h_{3}h_{5},~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g_{14}=-3h_{3}h_{5},\\&g_{15}=\mathrm {i} h_{3}h_{5}\sin (\gamma \omega ^{2} t),~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g_{16}=-12 h_{3}h_{4},\\&g_{17}=9h_{3}h_{4},~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g_{18}=-3\mathrm {i} h_{3}h_{4}\sin (\gamma \omega ^{2} t),\\&g_{19}=4 a_{i-1}^{2} h_{3}\mathrm {i} h_{7},~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g_{20}=-3 a_{i-1}^{2} h_{3}\mathrm {i} h_{7}+48 \gamma \sin (\gamma \omega ^{2} t) (\omega - a_{i-1}^{2}) h_{6},\\&g_{21}=- a_{i-1}^{2} h_{3}h_{7}\sin (\gamma \omega ^{2} t)\\&\quad \quad \quad +24 \mathrm {i} \gamma (\omega - a_{i-1}^{2}) h_{6},~~~~~~~~~~~~~~~~~~~~~~~~~\!~~~~g_{22}=4 h_{3}\mathrm {i} h_{7},\\&g_{23}=-3 h_{3}\mathrm {i} h_{7}-48 \gamma \sin (\gamma \omega ^{2} t) h_{6},~~~~~~~~~~~~~~~g_{24}=- h_{3}h_{7}\sin (\gamma \omega ^{2} t)-24 \mathrm {i} \gamma h_{6}, \end{aligned}$$

where

$$\begin{aligned}&h_{1}=4 \cos (\gamma \omega ^{2} t)^{3}-4 \mathrm {i} \sin (\gamma \omega ^{2} t)\cos (\gamma \omega ^{2} t)^{2}-3 \cos (\gamma \omega ^{2} t) + \mathrm {i} \sin (\gamma \omega ^{2} t),\\&h_{2}= (2\cos (\gamma \omega ^{2} t)^{2}+2 \mathrm {i} \sin (\gamma \omega ^{2} t) \cos (\gamma \omega ^{2} t)-1),\\&h_{3}=4 \mathrm {i} \cos (\omega t)^{3} +4 \sin (\omega t) \cos (\omega t)^{2}-3 \mathrm {i} \cos (\omega t)-\sin (\omega t) ,\\&h_{4}=-288\gamma ^{3}\omega ^{5} t^{2}-144\gamma ^{2}\omega ^{4} t^{2}-24 \gamma \omega ^{3} t^{2}-24\mathrm {i} \gamma \omega ^{2} t-\frac{4}{3}\omega ^{2} t^{2}-4 \mathrm {i} \omega t+14\gamma \omega +1,\\&h_{5}=432\gamma ^{3}\omega ^{5} t^{2}+216\gamma ^{2}\omega ^{4} t^{2}+36\gamma \omega ^{3} t^{2}+108\mathrm {i} \gamma ^{2}\omega ^{3} t+2\omega ^{2} t^{2}+72 \mathrm {i}\gamma \omega ^{2} t-30\gamma \omega +9\mathrm {i} \omega t+6,\\&h_{6}=2 \cos (\omega t)^{2} -2 \mathrm {i} \cos (\omega t) \sin (\omega t) -1,\\&h_{7}=-432 \mathrm {i} \gamma ^{3} \omega ^{4} t^{2}-216 \mathrm {i} \gamma ^{2}\omega ^{3}t^{2}-36 \mathrm {i} \gamma \omega ^{2}t^{2}-108\gamma ^{2}\omega ^{2}t -2 \mathrm {i}\omega t^{2}+30 \mathrm {i} \gamma +3 t, \\&\varsigma _{1} = (-12 \mathrm {i} \gamma \omega ^{2}t-2\mathrm {i} \omega t+1 ),~~~~~~~~~~~~~~~\varsigma _{2} = (6 \mathrm {i} \gamma \omega +\mathrm {i}),~~~~~~~~~~~~~~~\varsigma _{3} = (12 \mathrm {i} \gamma \omega ^{2}t+2\mathrm {i} \omega t+1 ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, M., Tian, L. & Wei, J. Infinitely many conservation laws and Darboux-dressing transformation for the three-coupled fourth-order nonlinear Schrödinger equations. Eur. Phys. J. Plus 137, 168 (2022). https://doi.org/10.1140/epjp/s13360-021-02200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02200-6

Navigation