Abstract
In this paper, a new chaotic circuit composed of memristor, meminductor, and capacitor in series is presented. The dimensionless mathematical model of the circuit is built. Then, the dynamical characteristics of chaotic systems varying with parameters are analyzed in detail. Besides, some peculiar phenomena such as the coexisting attractors and state transition are discovered. Finally, the circuit is implemented with DSP, and the numerical simulation results are verified. The accuracy of theoretical analysis is verified. The numerical simulation results show which the dynamic characteristics of this new chaotic system are very rich.
Similar content being viewed by others
References
E.N. Lorenz, Deterministic nonperiodic flow. J. Atmosp. Sci. 20(2), 130–141 (2004)
T.Y. Li, J.A. Yorke, Period three implies Chaos. Am. Math. Monthly 82(10), 985–992 (2004)
L.O. Chua, The Genesis of Chua’s Circuit (Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA, USA, 1992)
D. Zhang, A. Zhao, X.H. Yang et al., Generalized synchronization between Chen system and Rucklidge system. IEEE Access 7, 8519–8526 (2019)
C. B. Li, K. S. Xu, H. Wen, Sprott system locked on chaos with constant Lyapunov exponent spectrum and its anti-synchronization. Acta Phys. Sinica 60(12) (2011)
T. Liu, H. Yan, B. Santo, J. Mou, A fractional-order chaotic system with hidden attractor and self-excited attractorand its DSP implementation. Chaos Solitons Fract. 145(2021), 110791 (2021)
T. Liu, S. Banerjee, H. Yan, J. Mou, Dynamical analysis of the improper fractional-order 2D-SCLMM and its DSP implementation. Eur. Phys. J. Plus 136(5), 506 (2021)
C. Ma, J. Mou, P. Li et al., Dynamic analysis of a new two-dimensional map in three forms: integer-order, fractional-order and improper fractional-order. Eur. Phys. J. Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00133-w
Y. Peng, S. He, K. Sun, Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm. Nonlinear Dyn. 2021, 1–13 (2021)
X. Wang, J. Yu, C. Jin et al., Chaotic oscillator based on memcapacitor and meminductor. Nonlinear Dyn. 96, 161–173 (2019)
Z. Takran, M. Saba, U.E. Ayten et al., A new universal mutator circuit for memcapacitor and meminductor elements. AEU Int. J. Elect. Commun. 119, 153180 (2020)
B. Bao, L. Xu, N. Wang et al., Third-order RLCM-four-elements-based chaotic circuit and its coexisting bubbles. AEU Int. J. Elect. Commun. 94, 26–35 (2018)
T. Prodromakis, B.P. Peh, C. Papavassiliou et al., A versatile memristor model with nonlinear Dopant kinetics. IEEE Trans. Elect. Dev. 58(9), 3099–3105 (2011)
L. Chua, Memristor-the missing circuit element. IEEETrans. Circuit Theory 18(5), 507–519 (1971)
L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)
D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)
J.M. Tour, H. Tao, Electronics: the fourth element. Nature 453(7191), 42–43 (2008)
C. Moreno, C. Munuera, X. Obradors et al., The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods. Beilstein J. Nanotechnol. 3(1), 722 (2012)
J. Liu, G. Chen, X. Zhao, Generalized synchronization and parameters identification of different-dimensional chaotic systems in the complex field. Fractals 29(4), 2150081–2150824 (2021)
M. Peterlechner, T. Waitz, H.P. Karnthaler, Nanoscale amorphization of severely deformed NiTi shape memory alloys. Scr. Mater. 60(12), 1137–1140 (2009)
S. Vaidyanathan, V.T. Pham, C.K. Volos et al., A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J. Eng. Sci. Technol. Rev. 8(2), 205–214 (2014)
S. Vaidyanathan, A.T. Azar, A. Akgul et al., A memristor-based system with hidden hyperchaotic attractors, its circuit design, synchronisation via integral sliding mode control and an application to voice encryption. Int. J. Autom. Control 13(6), 644 (2019)
J. Secco, M. Poggio, F. Corinto, Supervised neural networks with memristor binary synapses. Int. J. Circ. Theory Appl. 46(1), 221–233 (2018)
M. Laiho, E. Lehtonen, Cellular nanoscale network cell with memristors for local implication logic and synapses. In: IEEE International Symposium on Circuits and Systems. IEEE, 2010:2051–2054 (2020)
G. Indiveri, B. Linares-Barranco, R. Legenstein et al., Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013)
R. Naous, M. AlShedivat et al., Memristor-based neural networks: Synaptic versus neuronal stochasticity. AIP Adv. 6(11), 111304 (2016)
C. Chen, H. Bao, M. Chen et al., Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: numerical simulations and breadboard experiments. AEU Int. J. Elect. Commun. 111, 152894 (2019)
H. Bao, Y. Zhang, W. Liu et al., Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100, 937–950 (2020)
M.D. Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)
Yu D, Liang Y, Iu H H C, et al. A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Trans. Circ. Syst. II Exp. Briefs 61(10):758–762 (2014)
Q. Lai, A unified chaotic system with various coexisting attractors. Int. J. Bifur. Chaos 31(1), 2150013 (2021)
X. Ma, J. Mou, J. Liu et al., A novel simple chaotic circuit based on memristor–memcapacitor. Nonlinear Dyn. 100(3), 2859–2876 (2020)
F. Yuan, Y. Li, A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor. Chaos 29(10), 101101 (2019)
Q. Lai, Z. Wan, L.K. Kengne, P.D.K. Kuate, C. Chen. Two-memristor-based chaotic system with infinite coexisting attractors. IEEE Trans. Circ. Syst. II Exp. Briefs, 68(6): 2197–2201 (2021)
M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)
Z. Hu, Y. Li, J. Li, J. Yu, Chaotic oscillator based on voltage-controlled memcapacitor. In: International Conference on Communications (2010).
X. Wang, F. Yuan et al., Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos 27, 033103 (2017)
M. Chen, B. Bao, T. Jiang et al., Flux-charge analysis of initial state-dependent dynamical behaviors of a memristor emulator-based Chua’s circuit. Int. J. Bifur. Chaos 28(10), 1850120 (2018)
M. Chen, M. Sun, H. Bao et al., Flux-charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Elect. 2019, 1–1 (2019)
F. Yang, J. Mou, C. Ma, Y. Cao, Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application. Opt. Lasers Eng. 2020(129), 106031 (2020)
X. Li, J. Mou, L. Xiong, Z. Wang, J. Xu, Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption. Opt. Laser Technol. 140(2021), 107074 (2021)
Y. Xian, X. Wang, Fractal sorting matrix and its application on chaotic image encryption. Inform. Sci. 547, 1154–1169 (2021)
M. Wang, X. Wang, Y. Zhang et al., A novel chaotic system and its application in a color image cryptosystem. Opt. Lasers Eng. 121, 479–494 (2019)
H. Wu, H. Zhu, G. Ye, Public key image encryption algorithm based on pixel information and random number insertion. Phys. Scr. 96(10), 105202 (2021)
H. Wang, X. Wang, C. Li et al., SPICE mutator model for transforming memristor into meminductor. Abs. Appl. Anal. 2013, 168–184 (2013)
Q. Zhao, C. Wang, X. Zhang, A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos 29, 013141 (2019)
F. Yuan, Y. Deng, Y. Li et al., The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit. Nonlinear Dyn. 96, 389–405 (2019)
B. Han, W. Liu, A. Hu, H. Bao, W. Liu, A. Hu, Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 95, 43–56 (2019)
S. He, K. Sun, H. Wang et al., Generalized synchronization of fractional-order hyperchaotic systems and its DSP implementation. Nonlinear Dyn. 92(1), 85–96 (2018)
S. He, K. Sun, H. Wang, Complexity analysis and DSP implementation of the fractional-order lorenz hyperchaotic system. Entropy 17(12), 8299–8311 (2015)
C. Ma, J. Mou, L. Xiong et al., Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dyn. 103, 2867–2880 (2021)
B. Muthuswamy, L.O. Chua, Simplest chaotic circuit. Int. J. Bifur. Chaos 20(05), 1002707 (2010)
J. Gallas, Stability diagrams for a memristor oscillator. Eur. Phys. J. Spec. Top. 228(10), 2081–2091 (2019)
C. Bonatto, J. Gallas, Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. Phys. Rev. Lett. 101(5), 54101 (2008)
B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifur. Chaos 20(05), 1335–1350 (2010)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant Nos. 62061014 and Nos. 61773010); The Natural Science Foundation of Liaoning province (2020-MS-274); The Basic Scientific Research Projects of Colleges and Universities of Liaoning Province (Grant Nos. J202148).
Funding
The national natural science foundation of china, 62061014, Yinghong Cao, 61773010, Jian Liu, natural science foundation of Liaoning province, 2020-MS-274, Jun Mou, basic scientific research projects of colleges and universities of Liaoning province, LJKZ0545, Jun Mou
Author information
Authors and Affiliations
Contributions
Xingce Liu designed and carried out experiments, data analyzed and manuscript wrote. Jun Mou and Yinghong Cao made the theoretical guidance for this paper. Jieyang Wang and Jian Liu improved the algorithm. All authors reviewed the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
No conflicts of interest about the publication by all authors.
Rights and permissions
About this article
Cite this article
Liu, X., Mou, J., Wang, J. et al. A new simple chaotic circuit based on memristor and meminductor. Eur. Phys. J. Plus 136, 1182 (2021). https://doi.org/10.1140/epjp/s13360-021-02182-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-021-02182-5