Skip to main content
Log in

A new simple chaotic circuit based on memristor and meminductor

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a new chaotic circuit composed of memristor, meminductor, and capacitor in series is presented. The dimensionless mathematical model of the circuit is built. Then, the dynamical characteristics of chaotic systems varying with parameters are analyzed in detail. Besides, some peculiar phenomena such as the coexisting attractors and state transition are discovered. Finally, the circuit is implemented with DSP, and the numerical simulation results are verified. The accuracy of theoretical analysis is verified. The numerical simulation results show which the dynamic characteristics of this new chaotic system are very rich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmosp. Sci. 20(2), 130–141 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  2. T.Y. Li, J.A. Yorke, Period three implies Chaos. Am. Math. Monthly 82(10), 985–992 (2004)

    MathSciNet  MATH  Google Scholar 

  3. L.O. Chua, The Genesis of Chua’s Circuit (Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA, USA, 1992)

    Google Scholar 

  4. D. Zhang, A. Zhao, X.H. Yang et al., Generalized synchronization between Chen system and Rucklidge system. IEEE Access 7, 8519–8526 (2019)

    Google Scholar 

  5. C. B. Li, K. S. Xu, H. Wen, Sprott system locked on chaos with constant Lyapunov exponent spectrum and its anti-synchronization. Acta Phys. Sinica 60(12) (2011)

  6. T. Liu, H. Yan, B. Santo, J. Mou, A fractional-order chaotic system with hidden attractor and self-excited attractorand its DSP implementation. Chaos Solitons Fract. 145(2021), 110791 (2021)

    Google Scholar 

  7. T. Liu, S. Banerjee, H. Yan, J. Mou, Dynamical analysis of the improper fractional-order 2D-SCLMM and its DSP implementation. Eur. Phys. J. Plus 136(5), 506 (2021)

    Google Scholar 

  8. C. Ma, J. Mou, P. Li et al., Dynamic analysis of a new two-dimensional map in three forms: integer-order, fractional-order and improper fractional-order. Eur. Phys. J. Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00133-w

    Article  Google Scholar 

  9. Y. Peng, S. He, K. Sun, Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm. Nonlinear Dyn. 2021, 1–13 (2021)

    Google Scholar 

  10. X. Wang, J. Yu, C. Jin et al., Chaotic oscillator based on memcapacitor and meminductor. Nonlinear Dyn. 96, 161–173 (2019)

    MATH  Google Scholar 

  11. Z. Takran, M. Saba, U.E. Ayten et al., A new universal mutator circuit for memcapacitor and meminductor elements. AEU Int. J. Elect. Commun. 119, 153180 (2020)

    Google Scholar 

  12. B. Bao, L. Xu, N. Wang et al., Third-order RLCM-four-elements-based chaotic circuit and its coexisting bubbles. AEU Int. J. Elect. Commun. 94, 26–35 (2018)

    Google Scholar 

  13. T. Prodromakis, B.P. Peh, C. Papavassiliou et al., A versatile memristor model with nonlinear Dopant kinetics. IEEE Trans. Elect. Dev. 58(9), 3099–3105 (2011)

    ADS  Google Scholar 

  14. L. Chua, Memristor-the missing circuit element. IEEETrans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  15. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    MathSciNet  Google Scholar 

  16. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    ADS  Google Scholar 

  17. J.M. Tour, H. Tao, Electronics: the fourth element. Nature 453(7191), 42–43 (2008)

    ADS  Google Scholar 

  18. C. Moreno, C. Munuera, X. Obradors et al., The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods. Beilstein J. Nanotechnol. 3(1), 722 (2012)

    Google Scholar 

  19. J. Liu, G. Chen, X. Zhao, Generalized synchronization and parameters identification of different-dimensional chaotic systems in the complex field. Fractals 29(4), 2150081–2150824 (2021)

    ADS  Google Scholar 

  20. M. Peterlechner, T. Waitz, H.P. Karnthaler, Nanoscale amorphization of severely deformed NiTi shape memory alloys. Scr. Mater. 60(12), 1137–1140 (2009)

    Google Scholar 

  21. S. Vaidyanathan, V.T. Pham, C.K. Volos et al., A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J. Eng. Sci. Technol. Rev. 8(2), 205–214 (2014)

    Google Scholar 

  22. S. Vaidyanathan, A.T. Azar, A. Akgul et al., A memristor-based system with hidden hyperchaotic attractors, its circuit design, synchronisation via integral sliding mode control and an application to voice encryption. Int. J. Autom. Control 13(6), 644 (2019)

    Google Scholar 

  23. J. Secco, M. Poggio, F. Corinto, Supervised neural networks with memristor binary synapses. Int. J. Circ. Theory Appl. 46(1), 221–233 (2018)

    Google Scholar 

  24. M. Laiho, E. Lehtonen, Cellular nanoscale network cell with memristors for local implication logic and synapses. In: IEEE International Symposium on Circuits and Systems. IEEE, 2010:2051–2054 (2020)

  25. G. Indiveri, B. Linares-Barranco, R. Legenstein et al., Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013)

    Google Scholar 

  26. R. Naous, M. AlShedivat et al., Memristor-based neural networks: Synaptic versus neuronal stochasticity. AIP Adv. 6(11), 111304 (2016)

    ADS  Google Scholar 

  27. C. Chen, H. Bao, M. Chen et al., Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: numerical simulations and breadboard experiments. AEU Int. J. Elect. Commun. 111, 152894 (2019)

    Google Scholar 

  28. H. Bao, Y. Zhang, W. Liu et al., Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100, 937–950 (2020)

    MATH  Google Scholar 

  29. M.D. Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Google Scholar 

  30. Yu D, Liang Y, Iu H H C, et al. A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Trans. Circ. Syst. II Exp. Briefs 61(10):758–762 (2014)

  31. Q. Lai, A unified chaotic system with various coexisting attractors. Int. J. Bifur. Chaos 31(1), 2150013 (2021)

    MathSciNet  MATH  Google Scholar 

  32. X. Ma, J. Mou, J. Liu et al., A novel simple chaotic circuit based on memristor–memcapacitor. Nonlinear Dyn. 100(3), 2859–2876 (2020)

    Google Scholar 

  33. F. Yuan, Y. Li, A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor. Chaos 29(10), 101101 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Q. Lai, Z. Wan, L.K. Kengne, P.D.K. Kuate, C. Chen. Two-memristor-based chaotic system with infinite coexisting attractors. IEEE Trans. Circ. Syst. II Exp. Briefs, 68(6): 2197–2201 (2021)

  35. M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Z. Hu, Y. Li, J. Li, J. Yu, Chaotic oscillator based on voltage-controlled memcapacitor. In: International Conference on Communications (2010).

  37. X. Wang, F. Yuan et al., Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos 27, 033103 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  38. M. Chen, B. Bao, T. Jiang et al., Flux-charge analysis of initial state-dependent dynamical behaviors of a memristor emulator-based Chua’s circuit. Int. J. Bifur. Chaos 28(10), 1850120 (2018)

    MathSciNet  Google Scholar 

  39. M. Chen, M. Sun, H. Bao et al., Flux-charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Elect. 2019, 1–1 (2019)

    Google Scholar 

  40. F. Yang, J. Mou, C. Ma, Y. Cao, Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application. Opt. Lasers Eng. 2020(129), 106031 (2020)

    Google Scholar 

  41. X. Li, J. Mou, L. Xiong, Z. Wang, J. Xu, Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption. Opt. Laser Technol. 140(2021), 107074 (2021)

    Google Scholar 

  42. Y. Xian, X. Wang, Fractal sorting matrix and its application on chaotic image encryption. Inform. Sci. 547, 1154–1169 (2021)

    MathSciNet  Google Scholar 

  43. M. Wang, X. Wang, Y. Zhang et al., A novel chaotic system and its application in a color image cryptosystem. Opt. Lasers Eng. 121, 479–494 (2019)

    Google Scholar 

  44. H. Wu, H. Zhu, G. Ye, Public key image encryption algorithm based on pixel information and random number insertion. Phys. Scr. 96(10), 105202 (2021)

    ADS  Google Scholar 

  45. H. Wang, X. Wang, C. Li et al., SPICE mutator model for transforming memristor into meminductor. Abs. Appl. Anal. 2013, 168–184 (2013)

    MATH  Google Scholar 

  46. Q. Zhao, C. Wang, X. Zhang, A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos 29, 013141 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  47. F. Yuan, Y. Deng, Y. Li et al., The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit. Nonlinear Dyn. 96, 389–405 (2019)

    MATH  Google Scholar 

  48. B. Han, W. Liu, A. Hu, H. Bao, W. Liu, A. Hu, Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 95, 43–56 (2019)

    Google Scholar 

  49. S. He, K. Sun, H. Wang et al., Generalized synchronization of fractional-order hyperchaotic systems and its DSP implementation. Nonlinear Dyn. 92(1), 85–96 (2018)

    Google Scholar 

  50. S. He, K. Sun, H. Wang, Complexity analysis and DSP implementation of the fractional-order lorenz hyperchaotic system. Entropy 17(12), 8299–8311 (2015)

    ADS  Google Scholar 

  51. C. Ma, J. Mou, L. Xiong et al., Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dyn. 103, 2867–2880 (2021)

    Google Scholar 

  52. B. Muthuswamy, L.O. Chua, Simplest chaotic circuit. Int. J. Bifur. Chaos 20(05), 1002707 (2010)

    Google Scholar 

  53. J. Gallas, Stability diagrams for a memristor oscillator. Eur. Phys. J. Spec. Top. 228(10), 2081–2091 (2019)

    Google Scholar 

  54. C. Bonatto, J. Gallas, Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. Phys. Rev. Lett. 101(5), 54101 (2008)

    ADS  Google Scholar 

  55. B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifur. Chaos 20(05), 1335–1350 (2010)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62061014 and Nos. 61773010); The Natural Science Foundation of Liaoning province (2020-MS-274); The Basic Scientific Research Projects of Colleges and Universities of Liaoning Province (Grant Nos. J202148).

Funding

The national natural science foundation of china, 62061014, Yinghong Cao, 61773010, Jian Liu, natural science foundation of Liaoning province, 2020-MS-274, Jun Mou, basic scientific research projects of colleges and universities of Liaoning province, LJKZ0545, Jun Mou

Author information

Authors and Affiliations

Authors

Contributions

Xingce Liu designed and carried out experiments, data analyzed and manuscript wrote. Jun Mou and Yinghong Cao made the theoretical guidance for this paper. Jieyang Wang and Jian Liu improved the algorithm. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jun Mou or Yinghong Cao.

Ethics declarations

Conflict of interest

No conflicts of interest about the publication by all authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Mou, J., Wang, J. et al. A new simple chaotic circuit based on memristor and meminductor. Eur. Phys. J. Plus 136, 1182 (2021). https://doi.org/10.1140/epjp/s13360-021-02182-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02182-5

Navigation