Skip to main content
Log in

Photocatalytic activity of silver/silica core–shell nanoparticles for reversible azo-dimerization

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) is a promising technique for the study of plasma-driven photocatalytic reactions. It can not only detect the chemical information of probe molecules but also provide a suitable catalytic substrate for surface catalytic reactions. In this paper, SiO2-coated silver nanoparticles (Ag@SiO2) were designed and synthesized, as the photocatalyst for the surface plasmon-enhanced chemical reactions. Driven by the localized surface plasmon resonance (LSPR) over the surface of Ag@SiO2, 4,4′-dimercaptoazobenzene (DMAB) was successfully synthesized by the photocatalytic dimerization of 4-aminothiophenol (PATP) under the excitation of 532 nm laser. The reaction was found reversible under the same experimental conditions. In addition, we designed and synthesized a novel SERS substrate based on Ag@SiO2. Meanwhile, the SERS substrate based on Ag nanofilms (AgNF) also was prepared for comparison. With the same condition excitation laser, Raman signal enhancement effects are different when applying AgNF and Ag@SiO2, which could be attributed to the fact that the inert SiO2 shell eliminates the CE mechanism of the Raman signal. These results provide a simple strategy to figure out the mechanism of the catalytic reaction based on SERS.

Graphical abstract

Driven by the LSPR over the surface of Ag@SiO2, DMAB was successfully synthesized by the PATP under the excitation of a 532 nm laser. The reaction was found reversible under the same experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974)

    Article  ADS  Google Scholar 

  2. D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977)

    Article  Google Scholar 

  3. P. Zhan, T. Wen, Z.G. Wang, Y. He, J. Shi, T. Wang, X. Liu, G. Lu, B. Ding, Angew. Chem. Int. Ed. Engl. 57, 2846 (2018)

    Article  Google Scholar 

  4. K. Kneipp, H. Kneipp, V.B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. E. 57, 6281 (1998)

    Article  ADS  Google Scholar 

  5. E. Garcia-Rico, R.A. Alvarez-Puebla, L. Guerrini, Chem. Soc. Rev. 47, 4909 (2018)

    Article  Google Scholar 

  6. S.D. Hudson, G. Chumanov, Anal. Bioanal. Chem. 394, 679 (2009)

    Article  Google Scholar 

  7. Z. Wang, S. Zong, L. Wu, D. Zhu, Y. Cui, Chem. Rev. 117, 7910 (2017)

    Article  Google Scholar 

  8. Y. Hong, X. Zhou, B. Xu, Y. Huang, W. He, S. Wang, C. Wang, G. Zhou, Y. Chen, T. Gong, A.C.S. Appl, Mater. Interfaces 12, 24192 (2020)

    Article  Google Scholar 

  9. B. Yang, S. Jin, S. Guo, Y. Park, L. Chen, B. Zhao, Y.M. Jung, ACS Omega 4, 20101 (2019)

    Article  Google Scholar 

  10. S. Gwo, C.Y. Wang, H.Y. Chen, M.H. Lin, L. Sun, X. Li, W.L. Chen, Y.M. Chang, H. Ahn, ACS Photonics 3, 1371 (2016)

    Article  Google Scholar 

  11. Z. Zhang, J. Kneipp, Anal. Chem. 90, 9199 (2018)

    Article  Google Scholar 

  12. W. Lin, Y. Cao, P. Wang, M. Sun, Langmuir 33, 12102 (2017)

    Article  Google Scholar 

  13. M. Sun, Y. Fang, Z. Zhang, H. Xu, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 87, 020401 (2013)

    Article  Google Scholar 

  14. P. Christopher, H. Xin, S. Linic, Nat. Chem. 3, 467 (2011)

    Article  Google Scholar 

  15. W. Cai, X. Tang, B. Sun, L. Yang, Nanoscale 6, 7954 (2014)

    Article  ADS  Google Scholar 

  16. X. Chen, L. Jensen, Nanoscale 10, 11410 (2018)

    Article  Google Scholar 

  17. D.V. Chulhai, X. Chen, L. Jensen, J. Phys. Chem. C 120, 20833 (2016)

    Article  Google Scholar 

  18. R. Yu, L.M. Liz-Marzan, F. García de Abajo, J. Chem. Soc. Rev. 46, 6710 (2017)

    Article  Google Scholar 

  19. R.L. Gieseking, M.A. Ratner, G.C. Schatz, J. Phys. Chem. A 120, 4542 (2016)

    Article  Google Scholar 

  20. R.L. Gieseking, M.A. Ratner, G.C. Schatz, Faraday Discuss. 205, 149 (2017)

    Article  ADS  Google Scholar 

  21. M. Yilmaz, E. Babur, M. Ozdemir, R.L. Gieseking, Y. Dede, U. Tamer, G.C. Schatz, A. Facchetti, H. Usta, G. Demirel, Nat. Mater. 16, 918 (2017)

    Article  ADS  Google Scholar 

  22. C. Zhan, X.J. Chen, Y.F. Huang, D.Y. Wu, Z.Q. Tian, Acc. Chem. Res. 52, 2784 (2019)

    Article  Google Scholar 

  23. X. Qi, Y. Wei, C. Jiang, L. Zhang, P. Wang, Y. Fang, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 237, 118362 (2020)

    Article  Google Scholar 

  24. S. Sheng, Y. Ji, X. Yan, H. Wei, Y. Luo, H. Xu, J. Phys. Chem. C 124, 11586 (2020)

    Article  Google Scholar 

  25. M. Sun, H. Xu, Small 8, 2777 (2012)

    Article  Google Scholar 

  26. U. Aslam, S. Chavez, S. Linic, Nat. Nanotechnol. 12, 1000 (2017)

    Article  ADS  Google Scholar 

  27. A.V. Zayats, S. Maier, Adv. Opt. Mater. 5, 1700508 (2017)

    Article  Google Scholar 

  28. Y.F. Huang, W. Wang, H.Y. Guo, C. Zhan, S. Duan, D. Zhan, D.Y. Wu, B. Ren, Z.Q. Tian, J. Am. Chem. Soc. 142, 8483 (2020)

    Article  Google Scholar 

  29. D.Y. Wu, X.M. Liu, Y.F. Huang, B. Ren, X. Xu, Z.Q. Tian, J. Phys. Chem. C 113, 18212 (2009)

    Article  Google Scholar 

  30. Z. Zeng, X. Qi, X. Li, L. Zhang, P. Wang, Y. Fang, Appl. Surf. Sci. 480, 497 (2019)

    Article  ADS  Google Scholar 

  31. W. Wang, Z.P. Li, B.H. Gu, Z.Y. Zhang, H.X. Xu, ACS Nano 3, 3493 (2009)

    Article  Google Scholar 

  32. J.F. Li, Y.J. Zhang, S.Y. Ding, R. Panneerselvam, Z.Q. Tian, Chem. Rev. 117, 5002 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos. 11774244, 11804237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L. Photocatalytic activity of silver/silica core–shell nanoparticles for reversible azo-dimerization. Eur. Phys. J. Plus 136, 1173 (2021). https://doi.org/10.1140/epjp/s13360-021-02167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02167-4

Navigation