Skip to main content

Advertisement

Log in

Electroosmosis optimized thermal model for peristaltic flow of with Sutterby nanoparticles in asymmetric trapped channel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The recent progress in the thermal sciences pronounced novel and optimized significances of nanoparticles in various era of engineering and technologies. The entropy generation phenomenon is the most fascinating mechanism to improve the energy loss and enhances the thermal prospective in various heat transfer system. The continuation presents the optimized thermal frame for the Sutterby nanoparticles due to trapped channel with applications of electroosmosis. The Sutterby nanoparticles followed the peristaltic pattern motion in channel with asymmetric walls. The fundamental theories are used to develop the governing expressions for the flow model. The relations for the entropy generation and Bejan number are accumulated. The ND-based simulations have been performed for the solution procedure. The thermal capability of Sutterby nanoparticles is visualized in view of governed parameters. The effects of Sutterby fluid parameter on velocity, temperature, stream function, heat transfer coefficient and entropy generation are presented graphically and discussed in detail. Several graphs are presented for visualizing the flow behavior. The streamlines are plotted to observe the flow path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Bejan, A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 101, 718–725 (1979)

    Article  Google Scholar 

  2. Y. Akbar, F.M. Abbasi, Impact of variable viscosity on peristaltic motion with entropy generation. Int. Commun. Heat Mass Transf. 118, 104826 (2020)

    Article  Google Scholar 

  3. Z.H. Khan, W.A. Khan, J. Tang, M.A. Sheremet, Entropy generation analysis of triple diffusive flow past a horizontal plate in porous medium. Chem. Eng. Sci. 228, 115980 (2020)

    Article  Google Scholar 

  4. A. Riaz, A. Gul, I. Khan, K. Ramesh, S.U. Khan, D. Baleanu, K.S. Nisar, Mathematical analysis of entropy generation in the flow of viscoelastic nanofluid through an annular region of two asymmetric annuli having flexible surfaces. Coatings 10(3), 213 (2020)

    Article  Google Scholar 

  5. M.Z. Akbar Qureshi, S. Bilal, M. Bilal Ameen, T. Mushtaq, M.Y. Malik, Numerical examination about entropy generation in magnetically effected hybridized nanofluid flow between orthogonal coaxial porous disks with radiation aspects. Surf. Interfaces 26, 101340 (2021)

    Article  Google Scholar 

  6. N. Khan, I. Riaz, M.S. Hashmi, S.A. Musmar, S.U. Khan, Z. Abdelmalek, I. Tlili, Aspects of chemical entropy generation in flow of Casson nanofluid between radiative stretching disks. Entropy 22(5), 495 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. M.K. Nayak, S. Shaw, M. Ijaz Khan, O.D. Makinde, Y.-M. Chu, S.U. Khan, Interfacial layer and shape effects of modified Hamilton’s Crosser model in entropy optimized Darcy-Forchheimer flow. Alex. Eng. J. 60(4), 4067–4083 (2021)

    Article  Google Scholar 

  8. P. Mondal, T.R. Mahapatra, MHD double-diffusive mixed convection and entropy generation of nanofluid in a trapezoidal cavity. Int. J. Mech. Sci. 208, 106665 (2021)

    Article  Google Scholar 

  9. H. Ge-JiLe, S. Qayyum, F. Shah, M.I. Khan, S.U. Khan, Slip flow of Jeffrey nanofluid with activation energy and entropy generation applications. Adv. Mech. Eng. 13(3), 1–9 (2021)

    Google Scholar 

  10. B. Mliki, M.A. Abbassi, Entropy generation of MHD natural convection heat transfer in a heated incinerator using hybrid-nanoliquid. Propuls. Power Res. 10(2), 143–154 (2021)

    Article  Google Scholar 

  11. A. Zaman, F. Mabood, A.A. Khan, A. Abbasi, M.F. Nadeem, I.A. Badruddin, Simulations of unsteady blood flow through curved stenosed channel with effects of entropy generations and magneto-hydrodynamics. Int. Commun. Heat Mass Transf. 127, 105569 (2021)

    Article  Google Scholar 

  12. A. Sahoo, R. Nandkeolyar, Entropy generation and dissipative heat transfer analysis of mixed convective hydromagnetic flow of a Casson nanofluid with thermal radiation and Hall current. Sci. Rep. 11, 3926 (2021)

    Article  ADS  Google Scholar 

  13. S. Mandal, G.C. Shit, Entropy analysis on unsteady MHD biviscosity nanofluid flow with convective heat transfer in a permeable radiative stretchable rotating disk. Chin. J. Phys. 74, 239–255 (2021)

    Article  MathSciNet  Google Scholar 

  14. H. Vaidya, C. Rajashekhar, G. Manjunatha, A. Wakif, K.V. Prasad, I.L. Animasaun, K. Shivaraya, Analysis of entropy generation and biomechanical investigation of MHD Jeffery fluid through a vertical non-uniform channel. Case Stud. Therm. Eng. 28, 101538 (2021)

    Article  Google Scholar 

  15. M.K. Nayak, S. Shaw, M. Ijaz Khan, O.D. Makinde, Y.-M. Chu, S.U. Khan, Interfacial layer and shape effects of modified Hamilton’s Crosser model in entropy optimized Darcy-Forchheimer flow. Alex. Eng. J. 60(4), 4067–4083 (2021)

    Article  Google Scholar 

  16. J. Prakash, K. Ramesh, D. Tripathi, R. Kumar, Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Microvasc. Res. 118, 162–172 (2018)

    Article  Google Scholar 

  17. A. Sharma, D. Tripathi, R.K. Sharma, A.K. Tiwari, Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids. Phys. A: Stat. Mech. Appl. 535, 122148 (2019)

    Article  MathSciNet  Google Scholar 

  18. J. Prakash, A. Sharma, D. Tripathi, Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liq. 249, 843–855 (2018)

    Article  Google Scholar 

  19. R.K. Lodhi, K. Ramesh, Comparative study on electroosmosis modulated flow of MHD viscoelastic fluid in the presence of modified Darcy’s law. Chin. J. Phys. 68, 106–120 (2020)

    Article  MathSciNet  Google Scholar 

  20. Z. Lv, L. Zhang, H. Wu, Y. Wang, Li J Induced charge electroosmosis characteristics of viscoelastic fluid around a metal cylinder. Colloids Surf. A: Physicochem. Eng. Asp. 623, 126727 (2021)

    Article  Google Scholar 

  21. S.S. Zhou, A. Abbasi, W. Farooq, M.I. Khan, S.U. Khan, Peristaltic transport of nano-fluid through a bio-fluidic channel with Joule heating features: applications of physiological systems. Eur. Phys. J. Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00231-9

    Article  Google Scholar 

  22. S. Noreen, S. Waheed, Study of heat characteristics of electroosmotic mediator and peristaltic mechanism via porous microtube. BioNanoScience 11, 476–488 (2021)

    Article  Google Scholar 

  23. U. Ghosh, S. Mukherjee, S. Chakraborty, Electrophoretic motion of a non-uniformly charged particle in a viscoelastic medium in thin electrical double layer limit. J. Fluid Mech. 924, A41 (2021). https://doi.org/10.1017/jfm.2021.643

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A. Abbasi, F. Mabood, W. Farooq, S.U. Khan, Radiation and joule heating effects on electroosmosis-modulated peristaltic flow of Prandtl nanofluid via tapered channel. Int. Commun. Heat Mass Transf. 123, 105183 (2021)

    Article  Google Scholar 

  25. S. Noreen, S. Waheed, D.C. Lu, D. Tripathi, Heat stream in electroosmotic bio-fluid flow in straight microchannel via peristalsis. Int. Commun. Heat Mass Transf. 123, 105180 (2021)

    Article  Google Scholar 

  26. A. Ali, Y. Ali, D.K. Marwat, M. Awais, Z. Shah, Peristaltic flow of nanofluid in a deformable channel with double diffusion. SN Appl. Sci. 2, 100 (2020)

    Article  Google Scholar 

  27. A. Bibi, H. Xu, Peristaltic channel flow and heat transfer of Carreau magneto hybrid nanofluid in the presence of homogeneous/heterogeneous reactions. Sci. Rep. 10, 11499 (2020)

    Article  Google Scholar 

  28. K.V. Prasad, H. Vaidya, C. Rajashekhar, S.U. Khan, G. Manjunatha, J.U. Viharika, Slip flow of MHD Casson fluid in an inclined channel with variable transport properties. Commun. Theor. Phys. 72(9), 095004 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. K. Javid, N. Ali, Z. Asghar, Numerical simulation of the peristaltic motion of a viscous fluid through a complex wavy non-uniform channel with magnetohydrodynamic effects. Phys. Scr. 94, 115226 (2019)

    Article  ADS  Google Scholar 

  30. H. Vaidya, C. Rajashekhar, K.V. Prasad, S.U. Khan, A. Riaz, J.U. Viharika, MHD peristaltic flow of nanofluid in a vertical channel with multiple slip features: an application to chyme movement. Biomech. Model. Mechanobiol. 2021(20), 1047–1067 (2021)

    Article  Google Scholar 

  31. C. Rajashekhar, G. Manjunatha, H. Vaidya, K.V. Prasad, S.U. Khan, Rheological consequences in peristaltic transport of Bingham fluid through an elastic tube with variable fluid properties and porous walls. Heat Transf. Asian Res. 49(6), 3391–3408 (2020). https://doi.org/10.1002/htj.21779

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ijaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Farooq, W., Khan, S.U. et al. Electroosmosis optimized thermal model for peristaltic flow of with Sutterby nanoparticles in asymmetric trapped channel. Eur. Phys. J. Plus 136, 1207 (2021). https://doi.org/10.1140/epjp/s13360-021-02161-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02161-w

Navigation