Skip to main content
Log in

Applications of silicon photomultipliers in ground-based and spaceborne high-energy astrophysics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Silicon Photomultipliers (SiPMs) are semiconductor photosensors employed in a wide spectrum of scientific, medical and industrial applications when fast time response and faint light sensitivity in the infrared-ultraviolet range are required. With respect to the well-established technology of photomultiplier tube sensors, SiPMs feature improved spectral sensitivity, robust and customizable mechanical properties and higher resilience and flexibility for operation in harsh environments. These properties make SiPMs an enabling candidate technology to replace photomultiplier tubes and improve the performances of the instrumentation in the field of astrophysics. Many of next generation instruments for imaging cameras of ground-based telescope arrays and for spaceborne detectors for the inspection of the high energy sky are in fact considering SiPMs as the default photodetection technology both for direct and indirect photon detection. We review the most recent advances in the development of SiPM-based instruments for applications that are of interest for the frontier research in astrophysics from ground-based and spaceborne detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Throughout this document, the term cosmic rays will be improperly used to refer to charged cosmic rays.

  2. https://mailchi.mp/12cb6698d185/cta-newsletter-october2019-english#SST, online October 2019.

References

  1. D. Renker, Nucl. Instrum. Methods Phys. Res. Sect. A 567, 48–56 (2006)

    Article  ADS  Google Scholar 

  2. D. Renker, E. Lorenz, JINST 4, P04004 (2009)

    Article  ADS  Google Scholar 

  3. A. Gola, C. Piemonte, Nucl. Instrum. Methods Phys. Res. Sect. A 926, 2–15 (2019)

    Article  ADS  Google Scholar 

  4. A.N. Otte et al., Nucl. Instrum. Methods Phys. Res. Sect. A 846, 106–125 (2017)

    Article  ADS  Google Scholar 

  5. G. Zappalà et al., JINST 11, P11010 (2016)

    Article  ADS  Google Scholar 

  6. F. Acerbi, S. Gundacker, Nucl. Instrum. Methods Phys. Res. Sect. A 926, 16–35 (2019)

    Article  ADS  Google Scholar 

  7. F. Acerbi et al., Instruments 3(1), 15 (2019)

    Article  Google Scholar 

  8. C. Piemonte et al., IEEE Trans. Electron Devices 63(3), 1111–1116 (2016)

    Article  ADS  Google Scholar 

  9. A. Gola et al., Sensors 19(2), 308 (2019)

    Article  ADS  Google Scholar 

  10. C. Jackson et al., Proc. SPIE 9359, Optical Components and Materials XII, 93591A (2015)

  11. A.M. Hillas, Astropart. Phys. 43, 19–43 (2013)

    Article  ADS  Google Scholar 

  12. J.A. Hinton, W. Hofmann, Ann. Rev. Astron. Astrophys. 47, 523–565 (2009)

    Article  ADS  Google Scholar 

  13. J. Aleksić et al., Astropart. Phys. 72, 61–75 (2016)

    Article  ADS  Google Scholar 

  14. J. Aleksić et al., Astropart. Phys. 72, 76–94 (2016)

    Article  ADS  Google Scholar 

  15. J.A. Hinton, New Astronom. Rev. 48(5–6), 331–337 (2004)

    Article  ADS  Google Scholar 

  16. J. Holder et al., Astropart. Phys. 25(6), 391–401 (2006)

    Article  ADS  Google Scholar 

  17. N. Park et al., Proceedings of Science ICRC2015, 771

  18. C. Perennes et al., Nucl. Instrum. Methods Phys. Res. Sect. A 984, 164485 (2020)

    Article  Google Scholar 

  19. A. Bouvier et al., Proc. SPIE 8852, Hard X-ray, Gamma-Ray, and Neutron Detector Physics XV, 88520K (2013)

  20. M. Wood et al., Astropart. Phys 72, 11–31 (2016)

    Article  ADS  Google Scholar 

  21. H. Anderhub et al., JINST 8, P06008 (2013)

    Article  Google Scholar 

  22. A. Biland et al., JINST 9, P10012 (2014)

    Article  Google Scholar 

  23. M. L. Knoetig et al., arXiv:1307.6116 [astro-ph.IM]

  24. G. Ambrosi et al., Nucl. Instrum. Methods Phys. Res. Sect. A 824, 125–127 (2016)

    Article  ADS  Google Scholar 

  25. B.S. Acharya et al., Astropart. Phys. 43, 3–18 (2013)

    Article  ADS  Google Scholar 

  26. The CTA Consortium, Science with the Cherenkov Telescope Array, (2019) ISBN: 978-981-3270-08-4

  27. M. Heller et al., Eur. Phys. J. C 77, 47 (2017)

    Article  ADS  Google Scholar 

  28. C. Alispach et al, Proceedings of Science ICRC2019, 617

  29. G. Pareschi, Proc. SPIE 9906, Ground-based and Airborne Telescopes VI, 99065T (2016)

  30. G. Marchiori et al., Proc. SPIE 10700, Ground-based and Airborne Telescopes VII, 107005W (2018)

  31. J.L. Dournaux et al., Nucl. Instrum. Methods Phys. Res. Sect. A 845, 355–358 (2017)

    Article  ADS  Google Scholar 

  32. A. Asano et al., Nucl. Instrum. Methods Phys. Res. Sect. A 912, 177–181 (2018)

    Article  ADS  Google Scholar 

  33. S. Lombardi et al., A&A 634, A22 (2020)

    Article  ADS  Google Scholar 

  34. J. F. Glicenstein, Proceedings of Science ICRC2019, 269

  35. C. Adams et al., Proc. SPIE 11488, Optical system alignment, tolerancing, and verification XIII, 1148805 (2020)

  36. C. Adams et al., Proceedings of Science ICRC2019, 807

  37. C. Adams et al., Astropart. Phys. 128, 102562 (2021)

    Article  Google Scholar 

  38. C. Adams et al., Proceedings of Science ICRC2019, 810

  39. C. Adams et al., Proceedings of Science ICRC2019, 742

  40. J. Cortina, Proceedings of Science ICRC2019, 653

  41. M. Mallamaci et al., Nucl. Instrum. Methods Phys. Res. Sect. A 936, 231–232 (2019)

    Article  ADS  Google Scholar 

  42. A. Berti et al., Nucl. Instrum. Methods Phys. Res. Sect. A 982, 164373 (2020)

    Article  Google Scholar 

  43. S. Sakurai, Proceedings of Science ICRC2019, 780

  44. D. Guberman et al., Nucl. Instrum. Methods Phys. Res. Sect. A 923, 19–25 (2019)

    Article  ADS  Google Scholar 

  45. H. He, Radiat. Detect. Technol. Methods 2, 7 (2018)

    Article  Google Scholar 

  46. B.Y. Bi et al., Proc. TIPP 2017, 22–26 (2017)

    Google Scholar 

  47. S. S. Zhang et al., Proceedings of Science ICRC2019, 489

  48. O. Gress et al., Nucl. Instrum. Methods Phys. Res. Sect. A 845, 367–372 (2017)

    Article  ADS  Google Scholar 

  49. D. Chernov et al., JINST 15, C09062 (2020)

    Article  Google Scholar 

  50. J. Audehm et al., Proceedings of Science ICRC2019, 636

  51. A. N. Otte et al, Proceedings of Science ICRC2019, 976

  52. K.T. Son, C.C. Lee, IEEE Trans. Instrum. Meas. 59(11), 3005–3011 (2010)

    Article  Google Scholar 

  53. J. Riu et al., Opt. Lett. 37(7), 1229–1231 (2012)

    Article  ADS  Google Scholar 

  54. C.E. Aalseth et al., JINST 12, P09030 (2017)

    Article  Google Scholar 

  55. F. Acerbi et al., IEEE Trans. Electron Devices 64(2), 521–526 (2017)

    Article  ADS  Google Scholar 

  56. L. Baudis et al., JINST 13, P10022 (2018)

    Article  Google Scholar 

  57. L. Consiglio, JINST 15, C05063 (2020)

    Article  Google Scholar 

  58. A. Anastasio et al., Nucl. Instrum. Methods Phys. Res. Sect. A 718, 134–137 (2013)

    Article  ADS  Google Scholar 

  59. V. Bocci et al., Seattle, WA 2014, 1–5 (2014)

    Google Scholar 

  60. S. Grazzi et al., Nucl. Instrum. Methods Phys. Res. Sect. A 976, 164275 (2020)

    Article  Google Scholar 

  61. S.N. Axani et al., JINST 13, P03019 (2018)

    Article  Google Scholar 

  62. M. Aguilar et al., Phys. Rept. 894, 1–116 (2021)

    Article  ADS  Google Scholar 

  63. O. Adriani et al., Phys. Rev. Lett. 119, 181101 (2017)

    Article  ADS  Google Scholar 

  64. O. Adriani et al., Riv. Nuovo Cim. 40(10), 473–522 (2017)

    ADS  Google Scholar 

  65. W.B. Atwood et al., Astrophys. J. 697(2), 1071–1102 (2009)

    Article  ADS  Google Scholar 

  66. J. Chang et al., Astropart. Phys. 95, 6–24 (2017)

    Article  ADS  Google Scholar 

  67. F. Altamura et al., Proceedings of the 29th international cosmic ray conference 2, 343 (2005)

  68. M. Casolino et al., Nucl. Instrum. Methods Phys. Res. Sect. A 986, 164649 (2021)

    Article  Google Scholar 

  69. P.F. Bloser et al., Nucl. Instrum. Methods Phys. Res. Sect. A 812, 92–103 (2016)

    Article  ADS  Google Scholar 

  70. T. Sharma et al., Manchester, United Kingdom 2019, 1–4 (2019)

  71. L.J. Mitchell et al., Manchester, United Kingdom 2019, 1–9 (2019)

  72. L. J. Mitchell et al, Proc. SPIE 11118, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI, 111180I (2019)

  73. M. Barella et al., Nucl. Instrum. Methods Phys. Res. Sect. A 979, 164490 (2020)

    Article  Google Scholar 

  74. S. N. Zhang et al., Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91440X (2014)

  75. D. De Angelis et al., Exp. Astron. 44, 25–82 (2017)

    Article  ADS  Google Scholar 

  76. A. Moiseev, Proceedings of Science ICRC2019, 583

  77. K. Lacombe et al., Nucl. Instrum. Methods Phys. Res. Sect. A 912, 144–148 (2018)

    Article  ADS  Google Scholar 

  78. C. Altomare et al., Nucl. Instrum. Methods Phys. Res. Sect. A 983, 164476 (2020)

    Article  Google Scholar 

  79. A.I. Arkhangelskiy et al., Phys. At. Nucl. 83, 252–257 (2020)

    Article  Google Scholar 

  80. A. De Benedittis et al., Proceedings of Science ICRC2019, 069

  81. C. Altomare et al., Nucl. Instrum. Methods Phys. Res. Sect. A 982, 164479 (2020)

    Article  Google Scholar 

  82. G. Paternoster et al., contribution to 13$^{th}$ Trento workshop on advanced silicon radiation detectors (2018)

  83. T. Kirn, Nucl. Instrum. Methods Phys. Res. Sect. A 845, 481–485 (2017)

    Article  ADS  Google Scholar 

  84. C. Perrina, EPJ Web of Conferences 209, 01040 (2019)

  85. C. Perrina et al., Proceedings of Science ICRC2019, 122

  86. J.H. Adams et al., Exp. Astron. 40, 3–17 (2015)

    Article  ADS  Google Scholar 

  87. A. Haungs, Proceedings of Science ICRC2015, 643

  88. A. Neronov et al., Phys. Rev. D 95, 023004 (2017)

    Article  ADS  Google Scholar 

  89. A. V. Olinto et al., arXiv:1907.06217 [astro-ph.HE]

  90. J.F. Krizmanic, Nucl. Instrum. Methods Phys. Res. Sect. A 985, 164614 (2021)

    Article  Google Scholar 

  91. S. Bacholle et al., arXiv:2010.01937 [astro-ph.IM]

  92. L. Wienke and A. Olinto, Proceedings of Science ICRC2017, 1097

  93. V. Scotti, G. Osteria, Nucl. Instrum. Methods Phys. Res. Sect. A 958, 162164 (2020)

    Article  Google Scholar 

  94. E. Garutti, Y. Musienko, Nucl. Instrum. Methods Phys. Res. Sect. A 926, 69–84 (2019)

    Article  ADS  Google Scholar 

  95. M. Durante, F.A. Cucinotta, Rev. Mod. Phys. 83, 1245 (2011)

    Article  ADS  Google Scholar 

  96. J. Link et al., Proceedings of Science ICRC2017, 235

  97. J. Link et al., Proceedings of Science ICRC2019, 096

  98. J. R. Smith et al., Proceedings of Science ICRC2019, 604

  99. X. Wu et al., Adv. Space Res. 63(8), 2672–2682 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ambrosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosi, G., Vagelli, V. Applications of silicon photomultipliers in ground-based and spaceborne high-energy astrophysics. Eur. Phys. J. Plus 137, 170 (2022). https://doi.org/10.1140/epjp/s13360-021-02159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02159-4

Navigation