Skip to main content
Log in

Hall and Ion-slip current effects on steady fluid flow through a rotating curved square duct with magnetic field

  • Letter to the Editor
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study is the numerical prediction of two-dimensional fully developed steady viscous incompressible flow through a rotating curved duct ranges from 0.01 to 0.5 with a square cross-section in the presence of the magnetic field, hall, and Ion-slip currents. The calculations are carried out numerically using the spectral method as the primary tool. In contrast, the Newton–Raphson, Chebyshev polynomial, Collocation, and arc-length methods are used as secondary tools. Dean Number (pressure gradient force) is applied in the direction of the axial flow. The rotation of the duct is shown within the range of Taylor number \(- 5000 \le T_{r} \le 5000\) at Dean Number \(D_{n} = 500\) and aspect ratio \(\,l = 1\). The effects of Dean Number have been investigated in wide ranges \(0 \le D_{n} \le 6000\) while Taylor number is fixed at \(\,T_{r} = 10\). The revealed streamlines of the secondary flow and contour lines of axial flow are illustrated and briefly explained their behavior for various values of magnetic, Hall and Ion-slip parameter on the flow characteristics at a particular two cases of Dean Numbers; Case-I:\(D_{n} = 500\) and Case-II:\(D_{n} = 1000.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the figures are shown by using numerical data in this paper. These data are supported to prepare the results of this study, and all the data included in the manuscript are available upon request by contacting with the corresponding author.]

References

  1. W.R. Dean, Note on the motion of fluid in a curved pipe. Philos. Mag. J. Sci. 4(20), 208–223 (1927)

    Article  Google Scholar 

  2. W.R. Dean, Note on the motion of fluid in a curved pipe. Philos. Mag. J. Sci. 5(30), 673–695 (1928)

    Article  Google Scholar 

  3. S.A. Berger, L. Talbot, L.S. Yao, Flow in curved pipes. Ann. Rev. Fluid Mech. 15, 461–512 (1983)

    Article  ADS  Google Scholar 

  4. K. Nandakumar, J.H. Masliyah, Bifurcation in steady laminar flow through curved tubes. J. Fluid Mech. 119, 475–490 (1982)

    Article  ADS  Google Scholar 

  5. K. Nandakumar, J.H. Masliyah, Swirling flow and heat transfer in coiled and twisted pipes. Adv. Transp. Process. 4, 49–112 (1986)

    Google Scholar 

  6. K.H. Winters, A bifurcation study of laminar flow in a curved tube of rectangular cross-section. J. Fluid Mech. 180, 343–369 (1987)

    Article  ADS  Google Scholar 

  7. H. Ishigaki, Laminar flow in rotating curved pipes. J. Fluid Mech. 329, 373–388 (1996)

    Article  ADS  Google Scholar 

  8. L. Wang, T. Yang, Bifurcation and Stability of Forced Convection in Rotating Curved Ducts of Square Cross Section. Int. J. Heat Mass Transfer 46, 613–629 (2003)

    Article  Google Scholar 

  9. L.Q. Wang, T.L. Yang, Multiplicity and Stability of Convection in Curved Ducts: Review and Progress. Adv. Heat Transfer 38, 203–256 (2004)

    Article  Google Scholar 

  10. K. Yamamoto, S. Yanase, M.M. Alam, Flow Through a Rotating Curved Duct withSquare Cross section. J. Phys. Soc. Jpn. 68, 1173–1184 (1999)

    Article  ADS  Google Scholar 

  11. K. Yamamoto, M.M. Alam, J. Yasuhara, A. Aribowo, Flow through a rotating helical pipe with circular cross section. Int. J. Heat Fluid Flow 21(2), 213–220 (2000)

    Article  Google Scholar 

  12. S. Yanase, R.N. Mondal, Y. Kaga, numerical study of non-isothermal flow with convective heat Transferin a curved rectangular duct. Int. J. Thermal Sci. 44(11), 047–1060 (2005)

    Article  Google Scholar 

  13. J.S. Zhang, B.Z. Zhang, J. Jii, Fluid flow in a rotating curved rectangular duct. Int. J. Heat Fluid Flow 22, 583–592 (2001)

    Article  Google Scholar 

  14. M. Selmi, K. Namdakumar, W.H. Finlay, A Bifurcation Study of Viscous Flow Through a Rotating Curved Duct. J. Fluid Mech. 262, 353–375 (1994)

    Article  ADS  Google Scholar 

  15. M. Selmi, K. Nandakumar, Finlay “Bifurcation study of flow through rotating curved ducts. AIP Physics of Fluids 11, 2030–2043 (1999)

    Article  ADS  Google Scholar 

  16. S. Yanase, N. Goto, K. Yamamoto, Dual solutions of the flow through a curved tube. Fluid Dyn. Res. 5(3), 191–201 (1989)

    Article  ADS  Google Scholar 

  17. S. Yanase, Y. Kaga, R. Daikai, Laminar flows through a curved rectangular duct over a wide range of the aspect ratio. Fluid Dyn. Res. 31(3), 151–183 (2002)

    Article  ADS  Google Scholar 

  18. K. Yamamato, W. Xiaoyum, N. Kazou, H. Yasutuka, Visualization of Taylor-Dean flow in a curved duct of square cross section. Fluid Dyn. Res. 38(1), 1–18 (2006)

    Article  ADS  Google Scholar 

  19. J.A.C. Humphrey, A.M.K. Taylor, J.H. Whitelaw, Laminar flow in a square duct of strong curvature. J. Fluid Mech. 83, 509–527 (1977)

    Article  ADS  Google Scholar 

  20. L.Q. Wang, F. Liu, Forced Convection in Slightly Curved Micro-channels. Int. J. Heat Mass Transfer 50, 881–896 (2007)

    Article  Google Scholar 

  21. L.Q. Wang, F. Liu, Forced Convection in Tightly Coiled Ducts: Bifurcation in a High Dean Number Region. Int. J. Non-Linear Mech. 42, 1018–1034 (2007)

  22. S. Yanase, T. Watanabe, T. Hyakutake, Traveling-wave solutions of the flow in a curved-square duct. Phys. Fluids 20(124101), 1–8 (2008)

    MATH  Google Scholar 

  23. M. Norouzi, M.H. Kayhani, M.R.H. Nobari, M.K. Demneh, Convective heat transfer of viscoelastic flow in a curved duct. World Acad. Sci. Eng. Technol. 32, 327–333 (2009)

    Google Scholar 

  24. F. Liu, L. Wang, Analysis on multiplicity and stability of convective heat transfer in tightly curved rectangular ducts. Int. J. Heat Mass Transf. 52, 5849–5866 (2009)

    Article  Google Scholar 

  25. H. Fellouah, C. Castelain, A. Ould-ElMoctar, H. Peerhossaini, The dean instability in power law and bingham fluids in a curved rectangular duct. J. Non Newtonian Fluid Mech. 165, 163–173 (2010)

    Article  Google Scholar 

  26. T.T. Chandratilleke, N. Nadim, R. Narayanaswamy, Vortex structure-based analysis of laminar flow behavior and thermal characteristics in curved ducts. Int. J. Thermal Sci. 59, 75–86 (2012)

    Article  Google Scholar 

  27. X.Y. Wu, S.D. Lai, K. Yamamoto, S. Yanase, Numerical analysis of the flow in a curved duct. Adv. Mater. Res. 706–708, 1450–1453 (2013)

    Article  Google Scholar 

  28. M.A. Kun, S. Yuan, H. Chang, H. Lai, Experimental study of pseudoplastic fluid flows in a square duct of strong curvature. J. Therm. Sci. 23(4), 359–367 (2014)

    Article  Google Scholar 

  29. S.E. Razavi, H. Soltanipour, P. Choupani, Second law analysis of laminar forced convection in a rotating curved duct. Thermal Sci. 19(1), 95–107 (2015)

    Article  Google Scholar 

  30. Y. Li, X. Wang, S. Yuan, S.K. Tan, Flow development in curved rectangular ducts with continuously varying curvature. Exp. Thermal Fluid Sci. 75, 1–15 (2016)

    Article  Google Scholar 

  31. K.F. Lima, M. Alam, Fluid flow through a straight pipe in a rotating system with magnetic field acting along center line having hall current. Modell. Meas. Control B 88(2–4), 79–86 (2019). https://doi.org/10.18280/mmc_b.882-406

    Article  Google Scholar 

  32. D. Gottlieb, S. A. Orszag, Numerical analysis of spectral methods, society for industrial and applied mathematics”, Philadelphia, USA (1977)

  33. L. Wang, T. Yang, Periodic oscillation in curved duct flows. Physica D 200(3), 296–302 (2005). https://doi.org/10.1016/j.physd.2004.11.003

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rafiqul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Samad, M.A. & Alam, M.M. Hall and Ion-slip current effects on steady fluid flow through a rotating curved square duct with magnetic field. Eur. Phys. J. Plus 136, 1204 (2021). https://doi.org/10.1140/epjp/s13360-021-02130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02130-3

Navigation