Skip to main content
Log in

Thermal buckling analysis of functionally graded annular plate with variable thickness

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper reports on the thermal buckling characteristics of the functionally graded (FG) annular plate with variable thickness. The differential quadrature finite element method is used to derive the control differential equation of the FG annular plate with variable thickness in the thermal field. The numerical model is established on the basis of the first-order shear deformation theory. The reliability and accuracy of the proposed model are verified through a series of comparative studies. The influences of various parameters on the natural frequency, the critical buckling temperature difference and the associated buckling mode shapes are also analyzed and discussed in detail. In addition, the influences of key parameters such as power-law exponent, geometric structure and temperature change on thermal buckling characteristics are investigated under different boundary conditions, cross-sectional shapes and temperature distributions in the thermal field. The results show that the boundary conditions on the outer ring exert a more enormous function on the natural frequency and the critical buckling temperature difference. Frequency parameters of the annular plates with different cross-sectional shapes affect the temperature changes under totally different levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statements

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. L.B. Rao, C.K. Rao, Buckling of annular plates with elastically restrained external and internal edges. Mech. Based Des. Struct. Mach. 41(2), 222–235 (2013)

    Article  Google Scholar 

  2. Y. Yang et al., Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation. Aerosp. Sci. Technol. 110, 106495 (2021)

    Article  Google Scholar 

  3. E. Hasrati, R. Ansari, H. Rouhi, A numerical approach to the elastic/plastic axisymmetric buckling analysis of circular and annular plates resting on elastic foundation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(19–20), 7041–7061 (2019)

    Article  Google Scholar 

  4. W. Pompe et al., Functionally graded materials for biomedical applications. Mater. Sci. Eng. A 362, 40–60 (2003)

    Article  Google Scholar 

  5. G. Udupa, S.S. Rao, K.V. Gangadharan, Functionally graded composite materials: an overview. Procedia Mater. Sci. 5, 1291–1299 (2014)

    Article  Google Scholar 

  6. F. Xu, X. Zhang, H. Zhang, A review on functionally graded structures and materials for energy absorption. Eng. Struct. 171(15), 309–325 (2018)

    Article  Google Scholar 

  7. H.S. Shen, Z.X. Wang, Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates. Compos. Struct. 94(7), 2197–2208 (2012)

    Article  Google Scholar 

  8. F. Tornabene, E. Viola, Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution. Eur. J. Mech. A. Solids 28(5), 991–1013 (2009)

    Article  ADS  Google Scholar 

  9. F. Tornabene, Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Eng. 198(37–40), 2911–2935 (2009)

    Article  ADS  Google Scholar 

  10. F. Tornabene, E. Viola, D.J. Inman, 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. J. Sound Vib. 328(3), 259–290 (2009)

    Article  ADS  Google Scholar 

  11. Z. Su et al., A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions. Int. J. Mech. Sci. 80, 62–80 (2014)

    Article  Google Scholar 

  12. K. Asemi, M. Salehi, M. Akhlaghi, Three dimensional graded finite element elasticity shear buckling analysis of FGM annular sector plates. Aerosp. Sci. Technol. 43(Jun.), 1–13 (2015)

    Article  Google Scholar 

  13. W.H. Duan, S.T. Quek, Q. Wang, Generalized hypergeometric function solutions for transverse vibration of a class of non-uniform annular plates. J. Sound Vib. 287(4–5), 785–807 (2005)

    Article  ADS  Google Scholar 

  14. J.H. Kang, Three-dimensional vibration analysis of thick, circular and annular plates with nonlinear thickness variation. Comput. Struct. 81(16), 1663–1675 (2003)

    Article  Google Scholar 

  15. F. Vivio, V. Vullo, Closed form solutions of axisymmetric bending of circular plates having non-linear variable thickness. Int. J. Mech. Sci. 52(9), 1234–1252 (2010)

    Article  Google Scholar 

  16. J.H. Kang, Axisymmetric vibration of rotating annular plate with variable thickness subjected to tensile centrifugal body force. Int. J. Struct. Stab. Dyn. 17, 1750101 (2017)

    Article  MathSciNet  Google Scholar 

  17. E. Efraim, M. Eisenberger, Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. J. Sound Vib. 299(4–5), 720–738 (2007)

    Article  ADS  Google Scholar 

  18. V. Tajeddini, A. Ohadi, M. Sadighi, Three-dimensional free vibration of variable thickness thick circular and annular isotropic and functionally graded plates on Pasternak foundation. Int. J. Mech. Sci. 53(4), 300–308 (2011)

    Article  Google Scholar 

  19. J. Woo, S.A. Meguid, Nonlinear analysis of functionally graded plates and shallow shells. Int. J. Solids Struct. 38(42–43), 7409–7421 (2001)

    Article  Google Scholar 

  20. H.L. Dai, Y.N. Rao, T. Dai, A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015. Compos. Struct. 152, 199–225 (2016)

    Article  Google Scholar 

  21. N. Noda, Thermal Stresses in Materials with Temperature-Dependent Properties (Springer, Netherlands, 1993)

    Book  Google Scholar 

  22. S.E. Ghiasian et al., Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. Int. J. Mech. Sci. 81, 137–148 (2014)

    Article  Google Scholar 

  23. J.S. Moita et al., Buckling and nonlinear response of functionally graded plates under thermo-mechanical loading. Compos. Struct. 202(12), 719–730 (2018)

    Article  Google Scholar 

  24. M.M. Ghomshei, V. Abbasi, Thermal buckling analysis of annular FGM plate having variable thickness under thermal load of arbitrary distribution by finite element method. J. Mech. Sci. Technol. 27(4), 1031–1039 (2013)

    Article  Google Scholar 

  25. T. Dai, H.L. Dai, Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed. Appl. Math. Model. 40, 7689–7707 (2016)

    Article  MathSciNet  Google Scholar 

  26. M. Damircheli, M. Azadi, Temperature and thickness effects on thermal and mechanical stresses of rotating FG-disks. J. Mech. Sci. Technol. 25(3), 827 (2011)

    Article  Google Scholar 

  27. M.R. Barati, A.M. Zenkour, Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. J. Vib. Control 24, 1910–1926 (2016)

    Article  MathSciNet  Google Scholar 

  28. T. Prakash, M. Ganapathi, Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Compos. B Eng. 37(7/8), 642–649 (2006)

    Article  Google Scholar 

  29. Z. Li et al., The thermal vibration characteristics of the functionally graded porous stepped cylindrical shell by using characteristic orthogonal polynomials. Int. J. Mech. Sci. 182, 105779 (2020)

    Article  Google Scholar 

  30. R. Wang et al., Coupled free vibration analysis of functionally graded shaft-disk system by differential quadrature finite element method. Eur. Phys. J. Plus 136(2), 1–27 (2021)

    Article  Google Scholar 

  31. Z. Lang, X. Li, Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells. Appl. Math. Model. 37(4), 2279–2292 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. Y. Kiani, M.R. Eslami, An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos. B 45(1), 101–110 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Grant No. 51705537), Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education, Northeastern University (VCAME202006). The authors also gratefully acknowledge the supports from State Key Laboratory of High Performance Complex Manufacturing, Central South University, China (Grant No. ZZYJKT2019-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Shao.

Appendix 1

Appendix 1

$$ \begin{aligned} {\mathbf{K}}_{11}^{e} & = \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} A_{11} + \frac{1}{{\mathbf{r}}}{\mathbf{E}}^{{\text{T}}} A_{12} } \right){\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} A_{66} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} A_{12} + \frac{1}{{\mathbf{r}}}{\mathbf{E}}^{{\text{T}}} A_{11} } \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{12}^{e} & = \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} A_{12} + \frac{1}{{\mathbf{r}}}{\mathbf{E}}^{{\text{T}}} A_{11} } \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} \frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} \left( {A_{66} {\mathbf{A}}_{02}^{\left( 1 \right)} - A_{66} \frac{1}{{\mathbf{r}}}{\mathbf{E}}} \right) \\ {\mathbf{K}}_{13}^{e} & = \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{11} + {\mathbf{E}}^{{\text{T}}} B_{12} \frac{1}{{\mathbf{r}}}} \right){\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{12} + {\mathbf{E}}^{{\text{T}}} B_{11} \frac{1}{{\mathbf{r}}}} \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{14}^{e} & = \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{12} + {\mathbf{E}}^{{\text{T}}} B_{11} \frac{1}{{\mathbf{r}}}} \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} \frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} - {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{15}^{e} & = {\mathbf{0}} \\ {\mathbf{K}}_{21}^{e} & = {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} A_{12} \frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} A_{11} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} A_{66} - {\mathbf{E}}^{{\text{T}}} A_{66} \frac{1}{{\mathbf{r}}}} \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ {\mathbf{K}}_{22}^{e} & = {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} A_{11} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} A_{66} - {\mathbf{E}}^{{\text{T}}} A_{66} \frac{1}{{\mathbf{r}}}} \right){\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{E}}^{{\text{T}}} A_{66} \frac{1}{{\mathbf{r}}} - {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} A_{66} } \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{23}^{e} & = {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{12} \frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{11} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} - {\mathbf{E}}^{{\text{T}}} B_{66} \frac{1}{{\mathbf{r}}}} \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ {\mathbf{K}}_{24}^{e} & = {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{11} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} - {\mathbf{E}}^{{\text{T}}} B_{66} \frac{1}{{\mathbf{r}}}} \right){\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{E}}^{{\text{T}}} B_{66} \frac{1}{{\mathbf{r}}} - {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} } \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{25}^{e} & = {\mathbf{0}} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{K}}_{31}^{e} & = \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} {\mathbf{B}}_{11} + {\mathbf{E}}^{{\text{T}}} {\mathbf{B}}_{12} \frac{1}{{\mathbf{r}}}} \right){\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} {\mathbf{B}}_{12} + {\mathbf{E}}^{{\text{T}}} {\mathbf{B}}_{11} \frac{1}{{\mathbf{r}}}} \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} {\mathbf{B}}_{66} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ {\mathbf{K}}_{32}^{e} & = \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{12} + {\mathbf{E}}^{{\text{T}}} B_{11} \frac{1}{{\mathbf{r}}}} \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} \frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} - {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{33}^{e} & = \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} D_{11} + {\mathbf{E}}^{{\text{T}}} D_{12} \frac{1}{{\mathbf{r}}}} \right){\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} D_{66} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ & \quad + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} D_{12} + {\mathbf{E}}^{{\text{T}}} D_{11} \frac{1}{{\mathbf{r}}}} \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} + {\mathbf{E}}^{{\text{T}}} A_{55} {\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{34}^{e} & = \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} D_{12} + {\mathbf{E}}^{{\text{T}}} D_{11} \frac{1}{{\mathbf{r}}}} \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} D_{66} \frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} - {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} D_{66} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{35}^{e} & = {\mathbf{E}}^{{\text{T}}} A_{55} {\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{K}}_{41}^{e} & = {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{12} \frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{11} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} - {\mathbf{E}}^{{\text{T}}} B_{66} \frac{1}{{\mathbf{r}}}} \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ {\mathbf{K}}_{42}^{e} & = {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} B_{11} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} - {\mathbf{E}}^{{\text{T}}} B_{66} \frac{1}{{\mathbf{r}}}} \right){\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{E}}^{{\text{T}}} B_{66} \frac{1}{{\mathbf{r}}} - {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} B_{66} } \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{43}^{e} & = {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} D_{12} \frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} D_{11} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} D_{66} - \frac{1}{{\mathbf{r}}}{\mathbf{E}}^{{\text{T}}} D_{66} } \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ {\mathbf{K}}_{44}^{e} & = {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} D_{11} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} + \left( {{\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} D_{66} - {\mathbf{E}}^{{\text{T}}} D_{66} \frac{1}{{\mathbf{r}}}} \right){\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} \\ & \quad + \left( {{\mathbf{E}}^{{\text{T}}} D_{66} \frac{1}{{\mathbf{r}}} - {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} D_{66} } \right)\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{E}} + {\mathbf{E}}^{{\text{T}}} A_{44} {\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{45}^{e} & = {\mathbf{E}}^{{\text{T}}} A_{44} \frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{K}}_{51}^{e} & = {\mathbf{0}} \\ {\mathbf{K}}_{52}^{e} & = {\mathbf{0}} \\ {\mathbf{K}}_{53}^{e} & = {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} A_{55} {\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{54}^{e} & = \frac{1}{{\mathbf{r}}}{\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} A_{44} {\mathbf{rC}}_{02} {\mathbf{E}} \\ {\mathbf{K}}_{55}^{e} & = {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} A_{55} {\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} A_{44} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ \end{aligned} $$
$$ \begin{aligned} {\mathbf{K}}_{{11{\text{T}}}}^{e} & = {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} N_{{r{\text{T}}}}^{{}} {\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} N_{{\theta {\text{T}}}}^{{}} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ {\mathbf{K}}_{{22{\text{T}}}}^{e} & = {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} N_{{r{\text{T}}}}^{{}} {\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} N_{{\theta {\text{T}}}}^{{}} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ {\mathbf{K}}_{{33{\text{T}}}}^{e} & = {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} M_{{r{\text{T}}}}^{{}} {\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} M_{{\theta {\text{T}}}}^{{}} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ {\mathbf{K}}_{{44{\text{T}}}}^{e} & = {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} M_{{r{\text{T}}}}^{{}} {\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} M_{{\theta {\text{T}}}}^{{}} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ {\mathbf{K}}_{{55{\text{T}}}}^{e} & = {\mathbf{A}}_{02}^{{\left( 1 \right){\text{T}}}} N_{{r{\text{T}}}}^{{}} {\mathbf{rC}}_{02} {\mathbf{A}}_{02}^{\left( 1 \right)} + {\mathbf{B}}_{02}^{{\left( 1 \right){\text{T}}}} N_{{\theta {\text{T}}}}^{{}} \frac{1}{{\mathbf{r}}}\frac{1}{{\mathbf{r}}}{\mathbf{rC}}_{02} {\mathbf{B}}_{02}^{\left( 1 \right)} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, R., Guan, X. et al. Thermal buckling analysis of functionally graded annular plate with variable thickness. Eur. Phys. J. Plus 136, 1218 (2021). https://doi.org/10.1140/epjp/s13360-021-02107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02107-2

Navigation