Skip to main content
Log in

On the dynamical behavior of nonlinear Fitzhugh–Nagumo and Bateman–Burger equations in quantum model using Sinc collocation scheme

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The main objective of this study is to numerically investigate the dynamical behavior of nonlinear Fitzhugh–Nagumo and Bateman–Burger systems through the Sinc collocation method by means of the \(\theta \)-weighted scheme on various grid points of time-dependent evolutionary one spatial dimension in open quantum flow field model. The proposed technique based on the Sinc function is treated as a shape function to transform the governing nonlinear partial differential equation into an algebraic system. To approximate the time and spatial derivatives, finite difference scheme and the \(\theta \)-weighted scheme have been used simultaneously due to the occurrence of infinite domain and multiple singularities. The effectiveness of the proposed results on the computational ground is illustrated graphically for better understanding and reliable performance of the design scheme is endorsed based on assessments of achieved accuracy in terms of stability analysis and convergence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z. Chen, J. Yepez, D.G. Cory, Simulation of the Burgers equation by NMR quantum-information processing. Phys. Rev. A 74(4), 042321 (2006)

    Article  ADS  Google Scholar 

  2. J. Yepez, Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity. Phys. Rev. A 74(4), 042322 (2006)

    Article  ADS  Google Scholar 

  3. H. Bateman, Some recent researches on the motion of fluids. Mon. Weather Rev. 43(4), 163–170 (1915)

    Article  ADS  Google Scholar 

  4. J.M. Burgers, A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  5. J. Biazar, H. Aminikhah, Exact and numerical solutions for non-linear Burger’s equation by VIM. Math. Comput. Model. 49(7–8), 1394–1400 (2009)

  6. M.A. Abdou, A.A. Soliman, Variational iteration method for solving Burger’s and coupled Burger’s equations. J. Comput. Appl. Math. 181(2), 245–251 (2005)

  7. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  ADS  Google Scholar 

  8. J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proceed. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  9. H.S. Shekarabi, M. Aqamohamadi, J. Rashidinia, Tension spline method for solution of Fitzhugh-Nagumo equation. Trans. A. Razmadze Math. Inst. 172(3), 571–581 (2018)

    Article  MathSciNet  Google Scholar 

  10. S. Abbasbandy, Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method. Appl.Math. Model. 32(12), 2706–2714 (2008)

    Article  MathSciNet  Google Scholar 

  11. H. Moghaderi, M. Dehghan, Mixed two-grid finite difference methods for solving one-dimensional and two-dimensional Fitzhugh-Nagumo equations. Math. Methods Appl. Sci. 40(4), 1170–1200 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Dehghan, J.M. Heris, A. Saadatmandi, Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses. Math. Methods Appl. Sci. 33(11), 1384–1398 (2010)

    MathSciNet  MATH  Google Scholar 

  13. M. Dehghan, F. Fakhar-Izadi, Pseudospectral methods for Nagumo equation. Int. J. Num. Methods in Biomed. Eng 27(4), 553–561 (2011)

    Article  MathSciNet  Google Scholar 

  14. S.A. Manaa, F.H. Easif, A.S. Faris, The finite difference methods for Fitzhugh-Nagumo equation. J. Math. 11(2), 51–55 (2015)

    Google Scholar 

  15. R. Jiwari, R.K. Gupta, V. Kumar, Polynomial differential quadrature method for numerical solutions of the generalized Fitzhugh-Nagumo equation with time-dependent coefficients. Ain Shams Eng. J. 5(4), 1343–1350 (2014)

    Article  Google Scholar 

  16. H. Feng, R. Lin, A finite difference method for the Fitzhugh-Nagumo equations. Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Appl. Algorithms 22, 401–412 (2015)

    MATH  Google Scholar 

  17. A.H. Abdel-Aty, M.M.A. Khater, D. Baleanu et al., Abundant distinct types of solutions for the nervous biological fractional FitzHugh-Nagumo equation via three different sorts of schemes. Adv Differ Equ 2020, 476 (2020). https://doi.org/10.1186/s13662-020-02852-1

    Article  MathSciNet  Google Scholar 

  18. Y. Khan, A variational approach for novel solitary solutions of Fitzhugh-Nagumo equation arising in the nonlinear reaction-diffusion equation. Int. J. Num. Methods for Heat & Fluid Flow 31(4) (2020)

  19. K.M. Agbavon, A.R. Appadu, B. Inan, Comparative study of some numerical methods for the standard Fitzhugh-Nagumo equation. Comput. Math. Appl. , 95–127 (2020)

  20. B. Inan, K.K. Ali, A. Saha, T. Ak, Analytical and numerical solutions of the Fitzhugh-Nagumo equation and their multistability behavior. Num. Methods for Partial Differen. Equ. 37(1), 7–23 (2021)

    Article  MathSciNet  Google Scholar 

  21. H. Ahmad, A.R. Seadawy, T.A. Khan, Numerical solution of Korteweg-de Vries-Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves. Physica Scripta 95(4), 045210 (2020)

    Article  ADS  Google Scholar 

  22. S.D. Murugan, U. Frisch, S. Nazarenko, N. Besse, S.S. Ray, Suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the Burgers equation. Phys. Rev. Res. 2(3), 033202 (2020)

    Article  Google Scholar 

  23. Oruçö., Bulut, F. and Esen, A.L.A.A.T.T.I.N., Chebyshev wavelet method for numerical solutions of coupled Burger’s equation. Hacettepe J. Math. Statistics 48(1), 1–16 (2019)

  24. G. Arora, V. Joshi, A computational approach using modified trigonometric cubic B-spline for numerical solution of Burger’s equation in one and two dimensions. Alexandria Eng. J. 57(2), 1087–1098 (2018)

  25. Y. Gao, L.H. Le, B.C. Shi, Numerical solution of Burger’s equation by lattice Boltzmann method. Appl. Math. Comput. 219(14), 7685–7692 (2013)

  26. M. Tamsir, N. Dhiman, V.K. Srivastava, Extended modified cubic B-Spline algorithm for nonlinear Burger’s equation. Beni-Suef Univ. J. Basic Appl. Sci. 5(3), 244–254 (2016)

  27. M.B. Abd-el-Malek, S.M. El-Mansi, Group theoretic methods applied to Burger’s equation. J. Comput. Appl. Math. 115(1–2), 1–12 (2000)

  28. S. Deniz, Semi-analytical investigation of modified Boussinesq-Burger equations. Balikesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1), 327–333 (2020)

    Article  Google Scholar 

  29. Y. Chen, Y. Shi, X. Sun, Averaging principle for slow-fast stochastic Burgers equation driven by a-stable process. Appl. Math. Lett. 103, 106199 (2020)

    Article  MathSciNet  Google Scholar 

  30. L.N.M. Tawfiq, A.H. Khamas, New coupled method for solving Burger’s equation. J. Phys.: Conf. Series. 1530(1), 012069 (2020)

  31. H.S. Shukla, M. Tamsir, V.K. Srivastava, M.M. Rashidi, Modified cubic B-spline differential quadrature method for numerical solution of three-dimensional coupled viscous Burger equation. Modern Phys. Lett. B 30(11), 1650110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Hieber, N. Kajiwara, K. Kress, P. Tolksdorf, The periodic version of the Da Prato-Grisvard theorem and applications to the bidomain equations with Fitzhugh-Nagumo transport. Annali di Matematica Pura ed Applicata 199(6), 2435–2457 (2020)

    Article  MathSciNet  Google Scholar 

  33. E. Acerbi, C.N. Chen, Y.S. Choi, Minimal lamellar structures in a periodic Fitzhugh-Nagumo system. Nonlinear Anal. 194, 111436 (2020)

    Article  MathSciNet  Google Scholar 

  34. D. Mirzaei, On analysis of kernel collocation methods for spherical PDEs. Appl. Num. Math. 150, 222–232 (2020)

    Article  MathSciNet  Google Scholar 

  35. N. Moshtaghi, A. Saadatmandi, Numerical solution of time fractional cable equation via the Sinc-bernoulli collocation method. J. Appl. Comput. Mech. (2020). https://doi.org/10.22055/jacm.2020.31923.1940

    Article  MATH  Google Scholar 

  36. M.A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions. Appl. Num. Math. 154, 205–222 (2020)

    Article  MathSciNet  Google Scholar 

  37. I. Ahmad, H. Ilyas, Homotopy Perturbation Method for the nonlinear MHD Jeffery-Hamel blood flows problem. Appl. Num. Math. 141, 124–132 (2019)

    Article  MathSciNet  Google Scholar 

  38. M. Seydaoglu, U. Erdogan, T. Özis, Numerical solution of Burger’s equation with high order splitting methods. J. Comput. Appl. Math. 291, 410–421 (2016)

  39. M.S. Hashemi, Z. Balmeh, On invariant analysis and conservation laws of the time fractional variant Boussinesq and coupled Boussinesq-Burger’s equations. Eur. Phys. J. Plus 133(10), 1–11 (2018)

  40. A. El-Ajou, Z. Al-Zhour, S. Momani, T. Hayat, Series solutions of nonlinear conformable fractional KdV-Burgers equation with some applications. Eur. Phys. J. Plus 134(8), 1–16 (2019)

    Article  Google Scholar 

  41. S. Sahoo, S.S. Ray, On the conservation laws and invariant analysis for time-fractional coupled Fitzhugh-Nagumo equations using the Lie symmetry analysis. Eur. Phys. J. Plus 134(2), 1–10 (2019)

    Article  Google Scholar 

  42. J. Kaur, R.K. Gupta, S. Kumar, Comment on On the conservation laws and invariant analysis for time-fractional coupled Fitzhugh-Nagumo equations using the Lie symmetry analysis by S. Sahoo and SS Ray. Eur. Phys. J. Plus 135(2), 1–6 (2020)

    Article  Google Scholar 

  43. H. Ismael, A. Seadawy, H. Bulut, Construction of breather solutions and N-soliton for the higher order dimensional Caudrey-Dodd-Gibbon-Sawada-Kotera equation arising from wave patterns. Int. J. Nonlinear Sci. Num.l Simulation (2021). https://doi.org/10.1515/ijnsns-2020-0169

    Article  Google Scholar 

  44. S. Haq, N. Bibi, S.I.A. Tirmizi, M. Usman, Meshless method of lines for the numerical solution of generalized Kuramoto-Sivashinsky equation. Appl. Math. Comput. 217(6), 2404–2413 (2010)

    MathSciNet  MATH  Google Scholar 

  45. N. Bellomo, L. Ridolfi, Solution of nonlinear initial-boundary value problems by sinc collocation-interpolation methods. Comput. Math. Appl. 29(4), 15–28 (1995)

    Article  MathSciNet  Google Scholar 

  46. A. Babaei, B.P. Moghaddam, S. Banihashemi, J.A.T. Machado, Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations. Commun. Nonlinear Sci. Num. Simulation 82, 104985 (2020)

    Article  MathSciNet  Google Scholar 

  47. K. Parand, M. Dehghan, A. Pirkhedri, The Sinc-collocation method for solving the Thomas-Fermi equation. J. Comput. Appl. Math. 237(1), 244–252 (2013)

    Article  MathSciNet  Google Scholar 

  48. M. Dehghan, F. Emami-Naeini, The Sinc-collocation and Sinc-Galerkin methods for solving the two-dimensional Schrödinger equation with nonhomogeneous boundary conditions. Appl. Math.l Model. 37(22), 9379–9397 (2013)

    Article  Google Scholar 

  49. A. Saadatmandi, M. Dehghan, The use of Sinc-collocation method for solving multi-point boundary value problems. Commun. Nonlinear Sci. Num. Simulation 17(2), 593–601 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  50. I. Ahmad, S.I. Hussain, H. Ilyas, J.L.G. Guirao, A. Ahmed, S. Rehmat, T. Saeed, Numerical solutions of Schrödinger wave equation and Transport equation through Sinc collocation method. Nonlinear Dynam. (2021). https://doi.org/10.1007/s11071-021-06596-9

    Article  Google Scholar 

  51. K. Al-Khaled, N. Haynes, W. Schiesser, M. Usman, Eventual periodicity of the forced oscillations for a Korteweg-de Vries type equation on a bounded domain using a sinc collocation method. J. Comput. Appl. Math. 330, 417–428 (2018)

    Article  MathSciNet  Google Scholar 

  52. I. Ahmad, S.I. Hussain, M. Usman, H. Ilyas, On the solution of Zabolotskaya-Khokhlov and Diffusion of Oxygen equations using a Sinc collocation method. Partial Differen. Equ. Appl. Math. 100066(2021)

  53. I. Ahmad, H. Ilyas, K. Kutlu, V. Anam, S.I. Hussain, J.L.G. Guirao, Numerical computing approach for solving Hunter-Saxton equation arising in liquid crystal model through sinc collocation method. Heliyon 7, e07600 (2021)

    Article  Google Scholar 

  54. V. Mukundan, A., Awasthi, Linearized implicit numerical method for Burger’s equation. Nonlinear Eng. 5(4), 219–234 (2016)

  55. N. Dhiman, M. Tamsir, A collocation technique based on modified form of trigonometric cubic B-spline basis functions for Fisher’s reaction-diffusion equation. Multidiscip. Model. Mater. Struct. 14(5), 923–939 (2018)

  56. M. Tamsir, N. Dhiman, Srivastava, v.K., Cubic trigonometric B-spline differential quadrature method for numerical treatment of Fisher’s rection-diffusion equations. Alexandria Eng. J. 57(3), 2019–2026 (2018)

  57. H. Ilyas, I. Ahmad, M.A.Z. Raja, M. Shoaib, A novel design of Gaussian Wavelet Neural Networks for nonlinear Falkner-Skan systems in fluid dynamics. Chinese J. Phys. 72, 386–402 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Program for Universities (NRPU), Higher Education Commission, Pakistan, No:8103/Punjab/NRPU/R and D/HEC/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Ahmad, SuI., Kutlu, K. et al. On the dynamical behavior of nonlinear Fitzhugh–Nagumo and Bateman–Burger equations in quantum model using Sinc collocation scheme. Eur. Phys. J. Plus 136, 1108 (2021). https://doi.org/10.1140/epjp/s13360-021-02103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02103-6

Navigation