Skip to main content
Log in

Soliton solutions and traveling wave solutions of the two-dimensional generalized nonlinear Schrödinger equations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the two-dimensional generalized nonlinear Schrödinger equations are introduced with the Lax pair. The existence of the Lax pair defines integrability for the partial differential equation, so the two-dimensional generalized nonlinear Schrödinger equations are integrable. Related to this development was the understanding that certain coherent structures called solitons play a basic role in nonlinear phenomena as fluid mechanics, nonlinear optics relativity, and lattice dynamics. Via the Hirota bilinear method, bilinear forms of the two-dimensional generalized nonlinear Schrödinger equations are obtained. Based on which one- and two-soliton solutions are derived. Furthermore, to find traveling wave solutions the extended tanh method is applied. Through 2D and 3D plots, the dynamical behavior of the obtained solutions is studied. The generalized form of the nonlinear Schrödinger equations has a mathematical and physical interest because a fundamental model in the field of nonlinear science. The used methods are quite useful in the solution of nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author].

References

  1. V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys.-JETP 34(1), 62–69 (1972)

    ADS  MathSciNet  Google Scholar 

  2. M.J. Ablowitz, P.A. Clarkson, Solitons (Cambridge University Press, Nonlinear Evolution Equations and Inverse Scattering. First Printing. Cambridge, 1991)

  3. M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform (SIAM, Philadelphia, 1981)

    Book  Google Scholar 

  4. M.J. Ablowitz et al., Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  5. K. Mio et al., Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41, 265–271 (1976)

    Article  ADS  Google Scholar 

  6. R. Guo, H. Hao, Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2426–2435 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Novikov et al., Theory of Solitons: The Inverse Scattering Method (First printing, Springer Science and Business Media, 1984)

  8. V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    Article  ADS  Google Scholar 

  9. M.S. Osman et al., The unified method for conformable time fractional Schrödinger equation with perturbation terms. Chin. J. Phys. 56(5), 2500–2506 (2018)

    Article  Google Scholar 

  10. J.J. Su, Y.T. Gao, N th-order bright and dark solitons for the higher-order nonlinear Schrödinger equation in an optical fiber. Superlattices Microstruct. 120, 697–719 (2018)

    Article  ADS  Google Scholar 

  11. Y.Q. Yang, X. Wang, Z.Y. Yan, Optical temporal rogue waves in the generalized inhomogeneous nonlinear Schrodinger equation with varying higher-order even and odd terms. Nonlinear Dyn. 81, 833 (2015)

    Article  Google Scholar 

  12. V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (First printing. Springer-Verlag, Berlin Heidelberg, 1991)

  13. G. Bekova et al., Dark and bright solitons for the two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch system with time-dependent coefficient. J. Phys. Conf. Ser. 965, 012035 (2018)

    Article  Google Scholar 

  14. Ch. Li, J. He, Darboux transformation and positons of the inhomogeneous Hirota and the Maxwell-Bloch equation. Science China: Phys. Mech. Astron. 57(5), 898 (2014)

    ADS  Google Scholar 

  15. K.R. Yesmakanova et al., Exact solutions for the (2+1)-dimensional Hirota-Maxwell-Bloch system. AIP Conf. Proc. 1880, 060022 (2017)

    Article  Google Scholar 

  16. K.R. Yesmakanova et al., Determinant reprentation of darboux transformation for the (2+1)-dimensional Schrodinger-Maxwell-Bloch equation. Adv. Intell. Syst. Comput. 441, 183–198 (2016)

    Google Scholar 

  17. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  Google Scholar 

  18. B.B. Kutum et al., The differential-q-difference 2D Toda equation: Bilinear form and soliton solutions. J. Phys. Conf. Ser. 1394, 012122 (2019)

    Article  Google Scholar 

  19. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  20. W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    Article  MathSciNet  Google Scholar 

  21. X. Lu, W.X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217 (2016)

    Article  MathSciNet  Google Scholar 

  22. M.T. Darvishi et al., Travelling wave solutions for Boussinesq-like equations with spatial and spatial-temporal dispersion. Romanian Reports Phys. 70(2), 1–12 (2018)

    Google Scholar 

  23. A.M. Wazwaz, The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants. Commun. Nonlinear Sci. Numer. Simul. 11(2), 148–160 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Springer-Verlag, Berlin Heidelberg, 2009)

    Book  Google Scholar 

  25. G. Bekova et al., Travelling wave solutions for the two-dimensional Hirota system of equations. AIP Conf. Proc. 1997, 020039 (2018)

    Article  Google Scholar 

  26. A.M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Appl. Math. Comput. 184(2), 1002–1014 (2007)

    MathSciNet  MATH  Google Scholar 

  27. R. Guo, H. Hao, L. Zhang et al., Bound solitons and breather for the generalized coupled nonlinear Schrodinger Maxwell Bloch system. Modern Phys. Lett. B 27(17), 1350130 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. D.W. Zuo, Y.T. Gao, Y.J. Feng, L. Xue, Rogue-wave interaction for a higher-order nonlinear Schrödinger Maxwell Bloch system in the optical-fiber communication. Nonlinear Dyn. 78, 2309 (2014)

    Article  Google Scholar 

  29. G.N. Shaikhova, B.B. Kutum, Traveling wave solutions of two-dimensional nonlinear Schrodinger equation via sine-cosine method. Eurasian Phys. Tech. J. 17(33), 169–174 (2020). (No.1)

    Article  Google Scholar 

  30. W. Malfliet, W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Physica Scripta 54, 563–568 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08956932).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdik, C., Shaikhova, G. & Rakhimzhanov, B. Soliton solutions and traveling wave solutions of the two-dimensional generalized nonlinear Schrödinger equations. Eur. Phys. J. Plus 136, 1095 (2021). https://doi.org/10.1140/epjp/s13360-021-02092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02092-6

Navigation