Skip to main content
Log in

Freezeout properties of different light nuclei at the RHIC beam energy scan

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the transverse momentum spectra of light nuclei (deuteron, anti-deuteron and triton) produced in Gold-Gold (Au-Au) collisions in different centrality bins by the blast wave model with Tsallis statistics. The model results are in agreement with the experimental data measured by STAR Collaboration in special transverse momentum ranges. We extracted the kinetic freezeout temperature, transverse flow velocity and kinetic freezeout volume. It is observed that kinetic freezeout temperature and transverse flow velocity increases initially, and then saturates from 14.5–39 GeV, while the kinetic freezeout volume increase initially up to 19.6 GeV but saturates from 19.6–39 GeV. This may indicate that the phase transition starts in part volume that ends in the whole volume at 39 GeV and the critical point may exists somewhere in the energy range of 14.5–39 GeV. The present work observed that the kinetic freezeout temperature, transverse flow velocity and kinetic freezeout volume has a decreasing trend from central to peripheral collisions. We found the freezeout volume of triton is smaller than those of deuteron and anti-deuteron, which shows that triton freezeout earlier than that of deuteron and anti-deuteron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article and are cited at relevant places within the text as references.

References

  1. PHENIX Collaboration, K. Adcox et al. Nucl. Phys. A 757, 184 (2005)

  2. STAR Collaboration, J. Adams et al., Nucl. Phys. A 757, 102 (2005)

  3. BRAHMS Collaboration, I. Arsene et al., Nucl. Phys. A 757, 1 (2005)

  4. PHOBOS Collaboration, B.B. Back et al., Nucl. Phys. A 757, 28 (2005)

  5. F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)

    Article  ADS  Google Scholar 

  6. J. Cleymans, K. Redlich, Phys. Rev. C 60, 054908 (1999)

    Article  ADS  Google Scholar 

  7. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

    Article  ADS  Google Scholar 

  8. A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, G. Pettini, Phys. Rev. D 41, 1610 (1990)

    Article  ADS  Google Scholar 

  9. M. Asakawa, K. Yazaki, Nucl. Phys. A 504, 668 (1989)

    Article  Google Scholar 

  10. M.A. Stephanov, Int. J. Mod. Phys. A 20, 4387 (2005)

    Article  ADS  Google Scholar 

  11. M.A. Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004)

    Article  ADS  Google Scholar 

  12. R.V. Gavai, S. Gupta, Phys. Rev. D 78, 114503 (2008)

    Article  ADS  Google Scholar 

  13. Z. Fodor, S.D. Katz, JHEP. 0404, 050 (2004)

    Article  ADS  Google Scholar 

  14. B. Povh, K. Rith, C. Scolz et al., Particle and nuclei (Springer-Verlag, Berlin, 2004)

    Book  Google Scholar 

  15. J.I. Kapusta, M. Li, Nucl. Phys. A 982, 903 (2019). arXiv:1807.10823

    Article  ADS  Google Scholar 

  16. L. Adamczyk [STAR] et al., Phys. Rev. C 94, 034908 (2016)

  17. J. Adam [ALICE] et al., Phys. Rev. C 93, 024917 (2016)

  18. J. Chen, D. Keane, Y.G. Ma, A. Tang, Z. Xu, Phys. Rept. 760, 1–39 (2018)

    Article  ADS  Google Scholar 

  19. R. Scheibl, U.W. Heinz, Phys. Rev. C 59, 1585–1602 (1999)

    Article  ADS  Google Scholar 

  20. H.H. Gutbrod, A. Sandoval, P.J. Johansen, A.M. Poskanzer, J. Gosset, W.G. Meyer, G.D. Westfall, R. Stock, Phys. Rev. Lett. 37, 667–670 (1976)

    Article  ADS  Google Scholar 

  21. W.J. Llope et al., Phys. Rev. C 52, 2004–2012 (1995)

    Article  ADS  Google Scholar 

  22. K.-J. Sun, L.-W. Chen, C.M. Ko, X. Zhangbu, Phys. Lett. B 774, 103–107 (2017)

    Article  ADS  Google Scholar 

  23. H. Sato, K. Yazaki, Phys. Lett. B 98, 153–157 (1981)

    Article  ADS  Google Scholar 

  24. A. Schwarzschild, C. Zupancic, Phys. Rev. 129, 854 (1963)

    Article  ADS  Google Scholar 

  25. C.B. Dover, U. Heinz, E. Schnedermann, J. Zimanyi, Phys. Rev. C 44, 1636 (1991)

    Article  ADS  Google Scholar 

  26. H. Sato, K. Yazaki, Phys. Lett. B 98, 153 (1981)

    Article  ADS  Google Scholar 

  27. R. Mattiello, H. Sorge, H. Stocker, W. Greiner, Phys. Rev. C 55, 1443 (1997)

    Article  ADS  Google Scholar 

  28. A. Polleri, J.P. Bondorf, I.N. Mishustin, Phys. Lett. B 419, 19 (1998)

    Article  ADS  Google Scholar 

  29. W. Zhao, L. Zhu, H. Zheng, C. Ming Ko, H. Song, Phys. Rev. C 99, 054905 (2018)

    Article  ADS  Google Scholar 

  30. S. Bazak, S. Mrowczynski, Mod. Phys. Lett. A 33, 1850142 (2018)

    Article  ADS  Google Scholar 

  31. P. Braun-Munzinger, V. Koch, T. Schäfer, J. Stachel, Phys. Rept. 621, 76, (2016) 1510.00442

  32. J. Cleymans, H. Satz, Z. Phys. C 57, 135 (1993)

    Article  ADS  Google Scholar 

  33. Y. Cai, T.D. Cohen, B.A. Gelman, Y. Yamauchi, Phys. Rev. C 100, 024911 (2019)

    Article  ADS  Google Scholar 

  34. P.J. Siemens, J.I. Kapusta, Phys. Rev. Lett. 43, 1486 (1979)

    Article  ADS  Google Scholar 

  35. A. Mekjian, Phys. Rev. Lett. 38, 640 (1977)

    Article  ADS  Google Scholar 

  36. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)

    Article  ADS  Google Scholar 

  37. A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stocker, Phys. Lett. B 697, 203 (2011)

    Article  ADS  Google Scholar 

  38. J. Cleymans, S. Kabana, I. Kraus, H. Oeschler, K. Redlich, N. Sharma, Phys. Rev. C 84, 054916 (2011)

    Article  ADS  Google Scholar 

  39. P. Danielewicz, G. Bertsch, Nucl. Phys. A 533, 712 (1991)

    Article  ADS  Google Scholar 

  40. S. Sombun, K. Tomuang, A. Limphirat, P. Hillmann, C. Herold, J. Steinheimer, Y. Yan, M. Bleicher, Phys. Rev. C 99, 014901 (2019)

    Article  ADS  Google Scholar 

  41. P. Danielewicz, G.F. Bertsch, Nucl. Phys. A 533, 712 (1991)

    Article  ADS  Google Scholar 

  42. O. Yongseok, Z.-W. Lin, C. Ming Ko, Phys. Rev. C 80, 064902 (2009)

    Article  ADS  Google Scholar 

  43. D. Oliinychenko, L.-G. Pang, H. Elfner, V. Koch, MDPI Proc. 10, 6 (2019)

    Google Scholar 

  44. D. Oliinychenko, L.-G. Pang, H. Elfner, V. Koch, Phys. Rev. C 99, 044907 (2019)

    Article  ADS  Google Scholar 

  45. S.T. Butler, C.A. Pearson, Phys. Rev. 129, 836 (1963)

    Article  ADS  Google Scholar 

  46. P. Braun-Munzinger, B. Dönigus, Nucl. Phys. A 987, 144–201 (2019). https://doi.org/10.1016/j.nuclphysa.2019.02.006

    Article  ADS  Google Scholar 

  47. A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stocker, Phys. Lett. B 697, 203–207 (2011). https://doi.org/10.1016/j.physletb.2011.01.053. arXiv:1010.2995

    Article  ADS  Google Scholar 

  48. B. Abelev [ALICE Collaboration] et al., Phys. Rev. Lett. 109, 252301 (2012)

  49. A. Andronic, Int. J. Mod. Phys. A 29, 1430047 (2014)

    Article  ADS  Google Scholar 

  50. H.L. Lao, F.H. Liu, B.C. Li, M.Y. Duan, Nucl. Sci. Tech. 29, 82 (2018)

    Article  Google Scholar 

  51. H.L. Lao, F.H. Liu, R.A. Lacey, Eur. Phys. J. A 53, 44 (2017)

    Article  ADS  Google Scholar 

  52. S. Zhang, Y.G. Ma, J.H. Chen, C. Zhong, Adv. High Energy Phys. 2016, 9414239 (2016)

    Google Scholar 

  53. S. Zhang, Y.G. Ma, J.H. Chen, C. Zhong, Adv. High Energy Phys. 2015, 460590 (2015)

    Article  Google Scholar 

  54. L. Adamczyk [STAR Collaboration] et al., Phys. Rev. C 96, 044904 (2017)

  55. X. Luo, Nucl. Phys. A 956, 75 (2016)

    Article  ADS  Google Scholar 

  56. S. Das [STAR Collaboration] 2015, EPJ Web Conf. 90, 08007

  57. S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, N. Sharma, Adv. High Energy Phys. 2015, 349013 (2015)

    Article  Google Scholar 

  58. M. Ajaz et al., Results Phys. 30, 104790 (2021)

    Article  Google Scholar 

  59. M. Waqas, B.C. Li, Adv. High Energy Phys. 2020, 1787183 (2020)

    Google Scholar 

  60. M. Waqas et al., Entropy 23(10), 1363 (2021). https://doi.org/10.3390/e23101363

  61. Q. Wang, F.H. Liu, Int. J. Theor. Phys. 58, 4119–4138 (2019)

    Article  Google Scholar 

  62. L. Kumar [STAR] Nucl. Phys. A 931, 1114–1119 (2014)

  63. M. Waqas, F.H. Liu, S. Fakhraddin, M.A. Rahim, Indian J. Phys. 93, 1329–1343 (2019)

    Article  ADS  Google Scholar 

  64. M. Waqas, F.H. Liu, Eur. Phys. J. Plus 135, 147 (2020)

    Article  Google Scholar 

  65. M. Waqas, G.X. Peng, F.H. Liu, J. Phys. G 48(7), 075108 (2021). https://doi.org/10.1088/1361-6471. [arXiv:2101.07971 [hep-ph]]

    Article  ADS  Google Scholar 

  66. D. Thakur, S. Tripathy, P. Garg, R. Sahoo, J. Cleymans, Adv. High Energy Phys. 2016, 4149352 (2016)

    Article  Google Scholar 

  67. M. Waqas, F.H. Liu, L.L. Li, H.M. Alfanda, Nucl. Sci. Tech. 31, 109 (2020)

    Article  Google Scholar 

  68. M. Waqas, F.H. Liu, Z. Wazir, Adv. High Energy Phys. 2020, 8198126 (2020)

    Google Scholar 

  69. Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang, Z. Xu, Phys. Rev. C 79, 051901 (2009)

    Article  ADS  Google Scholar 

  70. M. Shao, L. Yi, Z. Tang, H. Chen, C. Li, Z. Xu, J. Phys. G 37, 085104 (2010)

    Article  ADS  Google Scholar 

  71. Z. Tang et al., Chin. Phys. Lett. 30, 031201 (2013)

    Article  ADS  Google Scholar 

  72. O. Ristea, A. Jipa, C. Ristea, T. Esanu, M. Calin, A. Barzu, A. Scurtu, I. Abu-Quoad, J. Phys: Conf. Ser. 420, 012041 (2013)

    Google Scholar 

  73. A.S. Parvan, T. Bhattacharyya, Eur. Phys. J. A 56, 72 (2020)

    Article  ADS  Google Scholar 

  74. K. Jiang, Y.Y. Zhu, W.T. Liu, H.F. Chen, C. Li, L.J. Ruan, Z.B. Tang, Z.B. Xu, Phys. Rev. C 91, 024910 (2015)

    Article  ADS  Google Scholar 

  75. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

    Article  ADS  Google Scholar 

  76. F.H. Liu, Y.Q. Gao, H.R. Wei, Adv. High Energy Phys. 2014, 293873 (2014). https://doi.org/10.1155/2014/293873

    Article  Google Scholar 

  77. K. Jiang, Y. Zhu, W. Liu, H. Chen, C. Li, L. Ruan, Z. Tang, Z. Xu, Z. Xu, Phys. Rev. C 91, 024910 (2015). https://doi.org/10.1103/PhysRevC.91.024910. [arXiv:1312.4230 [nucl-ex]]

    Article  ADS  Google Scholar 

  78. J. Adam [STAR], et al., Phys. Rev. C 99, 064905 (2019). https://doi.org/10.1103/PhysRevC.99.064905

  79. D. Zhang [STAR] Nucl. Phys. A 1005, 121825 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121825

  80. R.Q. Wang, F.L. Shao, J. Song, Phys. Rev. C 103(6), 064908 (2021). https://doi.org/10.1103/PhysRevC.103.064908

    Article  ADS  Google Scholar 

  81. M. Waqas, G.X. Peng, F.H. Liu, Z. Wazir, https://doi.org/10.21203/rs.3.rs-418184/v1,[arXiv:2105.01300 [hep-ph]]

  82. R. Sahoo, AAPPS Bull. 29, 16 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank support from the National Natural Science Foundation of China (Grant Nos. 11875052, 11575190, and 11135011), the National Natural Science Foundation of China (Grant No. 12175115), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020MA097). We would also would like to acknowledge the support of Ajman University Internal Research Grant NO. [DGSR Ref.2021-IRG-HBS-12].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Waqas or G. X. Peng.

Ethics declarations

Compliance with ethical standards

The authors declare that they are in compliance with ethical standards regarding the content of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Peng, G.X., Wang, RQ. et al. Freezeout properties of different light nuclei at the RHIC beam energy scan. Eur. Phys. J. Plus 136, 1082 (2021). https://doi.org/10.1140/epjp/s13360-021-02089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02089-1

Navigation