Skip to main content
Log in

Non-singular collapse scenario from matter–curvature coupling

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present work, we study spherically symmetric gravitational collapse of a homogeneous perfect fluid in the context of generalized Rastall theory (GRT). In this modified version of the original Rastall gravity (RG), the coupling parameter which is a representative of matter–curvature interaction is no longer a constant parameter. Such a dynamic coupling may play the role of dark energy which is responsible for the present accelerating expansion of the Universe. Assuming then a linear equation of state (EoS) for the fluid profiles, we seek for physically reasonable collapse scenarios in which the spacetime singularity that occurs in general relativity (GR) is replaced by a non-singular bounce. We therefore find that depending on model parameters, the collapse process which starts from regular initial data will halt at a minimum value for the scale function and then turns into an expansion at a finite time. We further find that there exists a minimum value for the initial radius of collapsing object so that for radii smaller than this minimum radius, formation of apparent horizon can be avoided and hence the bounce can be visible to the observers within the Universe. We also compare our results to quantum corrected collapse scenarios and find that the mutual interaction between matter and geometry can play the role of quantum corrections to energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author, [AHZ], upon reasonable request].

References

  1. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  2. J.M.M. Senovilla, D. Garfinkle, Class. Quantum Gravity 32, 124008 (2015)

    Article  ADS  Google Scholar 

  3. F.J. Tipler, C.J.S. Clarke and G.F.R. Ellis, In General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, ed. by A. Held (Plenum Press, New York, 1980)

  4. J.M.M. Senovilla, Gen. Relativ. Gravit. 29, 701 (1997)

    Google Scholar 

  5. D.C. Moore, Trends in Quantum Gravity Research (Nova Science Publishers, New York, 2006)

    Google Scholar 

  6. P.S. Joshi, The Story of Collapsing Stars: Black Holes, Naked Singularities, and the Cosmic Play of Quantum Gravity (Oxford University Press, United Kingdom, 2015)

    Book  MATH  Google Scholar 

  7. S. Datt, Zs. f. Phys. 108, 314 (1938)

    Article  ADS  Google Scholar 

  8. J.R. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Penrose, Riv. Nuovo Cimento 1, 252 (1969)

    Google Scholar 

  10. R. Penrose, Gen. Relativ. Gravit. 34, 1141 (2002)

    Article  ADS  Google Scholar 

  11. R. Penrose, in General Relativity, An Einstein Centenary Survey, ed. by W. Israel, S. Hawking (Cambridge University Press, Cambridge, England, 1973)

  12. C.J.S. Clarke, Class. Quantum Gravity 11, 1375 (1994)

    Article  ADS  Google Scholar 

  13. R.M. Wald, arXiv:gr-qc/9710068

  14. S. Jhingan and G. Magli, arXiv:gr-qc/9903103

  15. T.P. Singh, J. Astrophys. Astron. 20, 221 (1999). arXiv:gr-qc/9805066

    Article  ADS  Google Scholar 

  16. P.S. Joshi, Global Aspects in Gravitation and Cosmology (Oxford University Press, Oxford, 1993)

    MATH  Google Scholar 

  17. P.S. Joshi, Gravitational Collapse and Spacetime Singularities (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  18. D. Christodoulou, Ann. Math. 140, 607 (1994)

    Article  MathSciNet  Google Scholar 

  19. R. Giambò, Class. Quantum Gravity 22, 2295 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Y. Tavakoli, J. Marto, A.H. Ziaie, P.V. Moniz, Gen. Relativ. Gravit. 45, 819 (2013)

    Article  ADS  Google Scholar 

  21. N. Banerjee, T. Paul, EPJC 78, 130 (2018)

    Article  ADS  Google Scholar 

  22. T. Harada, Phys. Rev. D 58, 104015 (1998)

    Article  ADS  Google Scholar 

  23. T. Harada, H. Maeda, Phys. Rev. D 63, 084022 (2001)

    Article  ADS  Google Scholar 

  24. R. Goswami, P.S. Joshi, Class. Quantum Gravity 19, 5229 (2002)

    Article  ADS  Google Scholar 

  25. P. Szekeres, V. Iyer, Phys. Rev. D 47, 4362 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Barve, T.P. Singh, L. Witten, Gen. Relativ. Gravit. 32, 697 (2000)

    Article  ADS  Google Scholar 

  27. A.A. Coley, B.O.J. Tupper, Phys. Rev. D 29, 2701 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  28. S.G. Ghosh, N. Dadhich, Gen. Relativ. Gravit. 35, 359 (2003)

    Article  ADS  Google Scholar 

  29. A. Banerjee, U. Debnath, S. Chakraborty, Int. J. Mod. Phys. D 12, 1255 (2003)

    Article  ADS  Google Scholar 

  30. H. Maeda, J. Phys.: Conf. Ser. 31, 161 (2006)

    ADS  Google Scholar 

  31. R. Garattini, J. Phys.: Conf. Ser. 174, 012066 (2009)

    Google Scholar 

  32. N. Bedjaoui, P.G. LeFloch, J.M. Martín-García, J. Novak, Class. Quantum Gravity 27, 245010 (2010)

    Article  ADS  Google Scholar 

  33. M.J. Amir, S. Ali, Int. J. Theor. Phys. 55, 2040 (2016)

    Article  Google Scholar 

  34. P.S. Joshi, Pramana 55, 529 (2000)

    Article  ADS  Google Scholar 

  35. P.S. Joshi, D. Malafarina, Int. J. Mod. Phys. D 20, 2641 (2011)

    Article  ADS  Google Scholar 

  36. M. Celerier, P. Szekeres, Phys. Rev. D 65, 123516 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  37. R. Giambò, F. Giannoni, G. Magli, P. Piccione, Commun. Math. Phys. 235, 546 (2003)

    Article  ADS  Google Scholar 

  38. T. Harada, H. Iguchi, K. Nakao, Prog. Theor. Exp. Phys. 107, 449 (2002)

    Article  ADS  Google Scholar 

  39. S. Weinberg, Gravitation and Cosmology (Wiley, Hoboken, 1972)

    Google Scholar 

  40. B.F. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  41. S.G. Turyshev, Annu. Rev. Nucl. Part. Sci. 58, 207 (2008)

    Article  ADS  Google Scholar 

  42. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  43. T. Harada, Pramana 63, 741 (2004)

    Article  ADS  Google Scholar 

  44. P.S. Joshi, Spacetime singularities, in Springer Handbook of Spacetime. ed. by A. Ashtekar, V. Petkov. Springer Handbooks. (Springer, Berlin, Heidelberg, 2014)

    Google Scholar 

  45. A.D. Rendall, arXiv:gr-qc/0503112

  46. K. Bamba, S. Nojiri, S.D. Odintsov, Phys. Lett. B 698, 451 (2011)

    Article  ADS  Google Scholar 

  47. G. Brando, F.T. Falciano, L.F. Guimaraes, Phys. Rev. D 98, 044027 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  48. A.H. Ziaie, P.V. Moniz, A. Ranjbar, H.R. Sepangi, Eur. Phys. J. C 74, 3154 (2014)

    Article  ADS  Google Scholar 

  49. M. Hashemi, S. Jalalzadeh, A.H. Ziaie, Eur. Phys. J. C 75, 53 (2015)

    Article  ADS  Google Scholar 

  50. C. Bambi, D. Malafarina, A. Marcianò, L. Modesto, Phys. Lett. B 734, 27 (2014)

    Article  ADS  Google Scholar 

  51. M. Bojowald, R. Goswami, R. Maartens, P. Singh, Phys. Rev. Lett. 95, 091302 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  52. R. Goswami, P.S. Joshi, P. Singh, Phys. Rev. Lett. 96, 031302 (2006)

    Article  ADS  Google Scholar 

  53. R. Casadio, S.D.H. Hsu, B. Mirza, Phys. Lett. B 695, 317 (2011)

    Article  ADS  Google Scholar 

  54. M. Bojowald, G.M. Paily, Class. Quantum Gravity 29, 242002 (2012)

    Article  ADS  Google Scholar 

  55. Y. Liu, D. Malafarina, L. Modesto, C. Bambi, Phys. Rev. D 90, 044040 (2014)

    Article  ADS  Google Scholar 

  56. J. Marto, Y. Tavakoli, P.V. Moniz, Int. J. Mod. Phys. D 24, 1550025 (2015)

    Article  ADS  Google Scholar 

  57. Y. Tavakoli, J. Marto, A. Dapor, Springer Proc. Math. Stat. 60, 427 (2014)

    Google Scholar 

  58. C. Kiefer, T. Schmitz, Phys. Rev. D 99, 126010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  59. Y. Tavakoli, J. Marto, A. Dapor, Int. J. Mod. Phys. D 23, 1450061 (2014)

    Article  ADS  Google Scholar 

  60. C. Bambi, D. Malafarina, L. Modesto, Phys. Rev. D 88, 044009 (2013)

    Article  ADS  Google Scholar 

  61. L. Parker, Phys. Rev. D 3, 346 (1971)

    Article  ADS  Google Scholar 

  62. L. Parker, Phys. Rev. D 3, 2546 (1971)

    Article  ADS  Google Scholar 

  63. L.H. Ford, Phys. Rev. D 35, 2955 (1987)

    Article  ADS  Google Scholar 

  64. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  65. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  66. P. Rastall, Phys. Rev. D 6, 3357 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  67. S. Nojiri, S.D. Odintsov, Phys. Lett. B 599, 137 (2004)

    Article  ADS  Google Scholar 

  68. G. Allemandi, A. Borowiec, M. Francaviglia, S.D. Odintsov, Phys. Rev. D 72, 063505 (2005)

    Article  ADS  Google Scholar 

  69. T. Koivisto, Class. Quantum Gravity 23, 4289 (2006)

    Article  ADS  Google Scholar 

  70. O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo, Phys. Rev. D 75, 104016 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  71. T. Harko, F.S.N. Lobo, Galaxies 2, 410 (2014)

    Article  ADS  Google Scholar 

  72. H. Moradpour, Y. Heydarzade, F. Darabi, I.G. Salako, Eur. Phys. J. C 77, 259 (2017)

    Article  ADS  Google Scholar 

  73. F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Eur. Phys. J. C 78, 25 (2018)

    Article  ADS  Google Scholar 

  74. H. Moradpour, I. Licata, C. Corda, I.G. Salako, Mod. Phys. Lett. A 33, 1950096 (2019)

    Article  Google Scholar 

  75. Z. Haghani, T. Harko, H.R. Sepangi, S. Shahidi, Int. J. Mod. Phys. D 23, 1442016 (2014)

    Article  ADS  Google Scholar 

  76. W.A.G. De Moraes, A.F. Santos, Gen. Relativ. Gravit. 51, 167 (2019)

    Article  ADS  Google Scholar 

  77. H. Shabani, A.H. Ziaie, Europhys. Lett. 129, 20004 (2020)

    Article  ADS  Google Scholar 

  78. Z. Haghani, T. Harko, Eur. Phys. J. C 81, 615 (2021)

    Article  ADS  Google Scholar 

  79. J.C. Fabris, O.F. Piattella, D.C. Rodrigues, C.E.M. Batista, M.H. Daouda, Int. J. Mod. Phys.: Conf. Ser. 18, 67 (2012)

    Google Scholar 

  80. A.S. Al-Rawaf, M.O. Taha, Phys. Lett. B 366, 69 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  81. A.S. AI-Rawaf, M.O. Taha, Gen. Relativ. Gravit. 28, 935 (1996)

    Article  ADS  Google Scholar 

  82. A.-M.M. Abdel-Rahman, Gen. Relativ. Gravit. 29, 1329 (1997)

    Article  ADS  Google Scholar 

  83. A.I. Arbab, J. Cosmol. Astropart. Phys. 2003, 008 (2003)

    Article  ADS  Google Scholar 

  84. C.E.M. Batista, J.C. Fabris, M.H. Daouda, Nuovo Cim. B 125, 957 (2010)

    Google Scholar 

  85. C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, Phys. Rev. D 85, 084008 (2012)

    Article  ADS  Google Scholar 

  86. C.E.M. Batista, J.C. Fabris, O.F. Piattella, A.M. Velasquez-Toribio, Eur. Phys. J. C 73, 2425 (2013)

    Article  ADS  Google Scholar 

  87. H. Moradpour, A. Bonilla, E.M.C. Abreu, J.A. Neto, Phys. Rev. D 96, 123504 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  88. Y. Heydarzade, F. Darabi, Phys. Lett. B 771, 365 (2017)

    Article  ADS  Google Scholar 

  89. F. Darabi, K. Atazadeh, Y. Heydarzade, Eur. Phys. J. Plus 133, 249 (2018)

    Article  Google Scholar 

  90. W. Khyllep, J. Dutta, Phys. Lett. B 797, 134796 (2019)

    Article  MathSciNet  Google Scholar 

  91. A. Singh, K.C. Mishra, Eur. Phys. J. Plus 135, 752 (2020)

    Article  ADS  Google Scholar 

  92. S.K. Maurya, F. Tello-Ortiz, Phys. Dark Univ. 29, 100577 (2020)

    Article  Google Scholar 

  93. S. Shahidi, arXiv:2108.00423 [gr-qc]

  94. R. Kumar, B.P. Singh, Md S. Ali, S.G. Ghosh, Phys. Dark Univ., 34, 100881 (2021)

  95. M. Tahir, G. Abbas, K. Bamba, M.R. Shahzad, Int. J Mod. Phys. A 36, 2150153 (2021)

    Article  ADS  Google Scholar 

  96. D.J. Gogoi, U.D. Goswami, Phys. Dark Univ. 33, 100860 (2021)

    Article  Google Scholar 

  97. K. Lin, W.-L. Qian, Eur. Phys. J. C 80, 561 (2020)

    Article  ADS  Google Scholar 

  98. S.A. Hayward, Phys. Rev. D 53, 1938 (1994)

    Article  ADS  Google Scholar 

  99. T.W. Baumgarte, S.L. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, Cambridge, 2010)

  100. D. Oriti, Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  101. D. Malafarina, Universe 3, 48 (2017)

    Article  ADS  Google Scholar 

  102. N.E. Mavromatos, Universe 6, 232 (2020)

    Article  ADS  Google Scholar 

  103. M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  104. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 73, 124038 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  105. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 74, 084003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  106. E. Wilson-Ewing, JCAP 1303, 026 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  107. M. Fathi, S. Jalalzadeh, P.V. Moniz, Eur. Phys. J. C 76, 527 (2016)

    Article  ADS  Google Scholar 

  108. M. Rashki, S. Jalalzadeh, Gen. Relativ. Gravit. 49, 14 (2017)

    Article  ADS  Google Scholar 

  109. L. Modesto, arXiv:gr-qc/0504043

  110. M. Bojowald, T. Harada, R. Tibrewala, Phys. Rev. D 78, 064057 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  111. L. Modesto, Int. J. Theor. Phys. 47, 357 (2008)

    Article  MathSciNet  Google Scholar 

  112. M. Bojowald, Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  113. R. Tibrewala1, Class. Quantum Gravity 29, 235012 (2012)

  114. J.G. Kelly, R. Santacruz, E. Wilson-Ewing, Class. Quantum Gravity 38, 04LT01 (2021)

    Article  Google Scholar 

  115. J. Münch, Phys. Rev. D 104, 046019 (2021)

    Article  ADS  Google Scholar 

  116. A.H. Ziaie, H. Moradpour, S. Ghaffari, Phys. Lett. B 793, 276 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the anonymous referee for providing useful and constructive comments that helped us to improve the original version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Ziaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaie, A.H., Moradpour, H. & Mohammadi Sabet, M. Non-singular collapse scenario from matter–curvature coupling. Eur. Phys. J. Plus 136, 1085 (2021). https://doi.org/10.1140/epjp/s13360-021-02082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02082-8

Navigation