Skip to main content
Log in

Memristor-based chaotic system with abundant dynamical behaviors and its application

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The memristor is a controllable nonlinear element that can easily generate chaotic signals. Currently, most researchers focus on the nonlinear properties of memristors, while the ability of memristor to control and adjust chaotic systems has rarely been addressed. Therefore, we design a memristor-based chaotic system to produce the upper-lower attractors by changing the polarity of the memristor. Dynamics phenomena, such as multi-stability, transient phenomena, sustained chaos, bi-stability and intermittent chaos, are observed in the system. Several fundamental dynamical behaviors, including the stability of equilibria, symmetry, and dissipation, are investigated. To prove the physical existence of the system, we give the PSPICE circuit simulation and the MCU (microcontroller unit) hardware implementation. Additionally, the theory of stochastic differential equations is applied to demonstrate the immunity of the system to zero-mean Gaussian noise. Based on the designed recursive back-stepping controller and the proposed chaotic system, we present a new method to detect weak multi-frequency signals embedded in Gaussian noise. Experimental results demonstrate that the proposed method is able to detect each frequency of a multi-frequency weakly periodic signal submerged in a Gaussian noise background, which is important for promoting the engineering application of the memristor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability statements

The data that support the findings of this study are available on request from the corresponding author.

References

  1. L.O. Chua, IEEE Trans. Circuit Theory 18, 5 (1971)

    Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 7250 (2008)

    Article  Google Scholar 

  3. X. Zhao, Z. Wang, W. Li, S. Sun, Y. Liu, Adv. Funct. Mater 30, 17 (2020)

    Google Scholar 

  4. S. Wen, Z. Zeng, T. Huang et al., J. Franklin Inst. 350, 8 (2013)

    Google Scholar 

  5. M. Guo, Y. Xue, Z. Gao et al., Int. J. Bifur. Chaos 27, 1730047 (2017)

    Article  Google Scholar 

  6. Y.M. Xu, L.D. Wang, S.K. Duan, Acta. Phys. Sin. 65, 12 (2016)

    Google Scholar 

  7. G.Q. Min, L.D. Wang, S.K. Duan, Acta. Phys. Sin. 64, 21 (2015)

    Google Scholar 

  8. J.N. Wu, L.D. Wang, G.R. Chen, S.K. Duan, Chaos Soliton Fract. 92, 1 (2016)

    Article  ADS  Google Scholar 

  9. X. Zhong, M. Peng, M. Shahidehpour, Int. J. Circ. Theor. App. 5, 47 (2019)

    Google Scholar 

  10. C.H. Wang, H. Xia, L. Zhou, Int. J. Bifurc. Chaos 27, 6 (2017)

    Google Scholar 

  11. L. Zhou, C.H. Wang, L.L. Zhou, Int. J. Bifurc. Chaos 27, 2 (2017)

    Google Scholar 

  12. H.F. Li, L.D. Wang, S.K. Duan, Int. J. Bifurc. Chaos 24, 7 (2014)

    Google Scholar 

  13. M. Itoh, L. Chua, Int. J. Bifurc. Chaos 18, 11 (2008)

    Google Scholar 

  14. J. Kengne, A.N. Negou, D. Tchiotsop, Nonlinear Dyn. 88, 4 (2017)

    Article  Google Scholar 

  15. J.C. Sprott, IEEE T. Circuits-II 58, 4 (2011)

    Google Scholar 

  16. S.B. He, K.H. Sun, Y.X. Peng, L. Wang, AIP Adv. 10, 1 (2020)

    Google Scholar 

  17. Y.X. Peng, K.H. Sun, S.B. He, AEU-Int. J. Electron. C 129, 153539 (2021)

    Article  Google Scholar 

  18. Y.X. Peng, S.B. He, K.H. Sun, Results Phys. 24, 104106 (2021)

    Article  Google Scholar 

  19. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Physica D 241, 18 (2012)

    Article  Google Scholar 

  20. S. Zhang, Y.C. Zeng, Z. Li, J. Comput. Nonlinear Dyn. 13, 9 (2018)

    Google Scholar 

  21. S. Zhang, Y.C. Zeng, Z. Li, C. Zhou, Int. J. Bifurc. Chaos 28, 13 (2018)

    Google Scholar 

  22. S. Jafari, J. Sprott, S.M.R.H. Golpayegani, Amer. J. Phys. 377, 9 (2013)

    Google Scholar 

  23. X. Ma, J. Mou, L. Xiong, S. Banerjee, Y. Cao, J. Wang, Chaos Solitons Fract. 152, 111363 (2021)

    Article  Google Scholar 

  24. T. Liu, S. Banerjee, H. Yan, J. Mou, Eur. Phys. J. Plus 136, 5 (2021)

    Article  Google Scholar 

  25. M.F.A. Rahim, H. Natiq, N.A.A. Fataf, S. Banerjee, Eur. Phys. J. Plus 134, 10 (2019)

    Article  Google Scholar 

  26. C.H. Yang, C.H. Ge, C.M. Chang, S.Y. Li, Nonlinear Anal-real 11, 3 (2010)

    Google Scholar 

  27. G. Litak, A. Syta, M. Borowiec, Chaos Solitons Fract. 32, 2 (2007)

    Article  Google Scholar 

  28. G.S. Mfoumou, G.D. Kenmoé et al., Mech. Syst. Signal Pr. 119, 399–419 (2019)

    Article  Google Scholar 

  29. A.N. Njah, Nonlinear Dyn. 61, 1 (2010)

    Article  MathSciNet  Google Scholar 

  30. D. L. Birx, S. J. Pipenberg, In 1992 International Joint Confence on Networks Baltimore (IJCNB). IEEE, p. 7 (1992).

  31. C.X. Yan, L.Y. Chun, D.Q. Xiao, Chinese Phys. B 19, 3 (2010)

    Google Scholar 

  32. G. Li, G. Zhang, I.E.E.E.T. Ind, Electron 64, 3 (2016)

    Google Scholar 

  33. J. Luo, X. Xu, B. Yang et al., Eur. Phys. J. Plus 133, 6 (2018)

    Article  ADS  Google Scholar 

  34. L.D. Wang, E. Drakakis, S.K. Duan et al., Int. J. Bifurc. Chaos 22, 8 (2012)

    Google Scholar 

  35. J.H. Lü, G.R. Chen, D. Cheng, Int. J. Bifurc. Chaos 14, 5 (2004)

    Google Scholar 

  36. C. Chen, J. Chen, H. Bao et al., Nonlinear Dyn. 95, 4 (2019)

    Google Scholar 

  37. M. Guo, Y. Xue, Z. Gao et al., Int. J. Bifurc. Chaos 27, 13 (2018)

    Google Scholar 

  38. W. Wei, Y.C. Zeng, R.T. Sun, Acta Phys. Sin. 66, 4 (2017)

    Google Scholar 

  39. B.C. Bao, P. Jiang, H. Wu et al., Nonlinear Dyn. 79, 4 (2015)

    Article  Google Scholar 

  40. P.D.K. Kuate, Q. Lai, H. Fotsin, Eur. Phys. J. Spec. Top. 228, 10 (2019)

    Google Scholar 

  41. I. Koyuncu, A.T. Ozcerit, I. Pehlivan, Nonlinear Dyn. 77, 2 (2014)

    Article  Google Scholar 

  42. Q. Yong, H.J. Cheng, C. Chen et al., Proceed. CSEE 27, 6 (2007)

    Google Scholar 

Download references

Acknowledgements

Project supported by the National Key R&D Program of China (Grant No. 2018YFB1306600), the National Natural Science Foundation of China (Grant Nos.62076207, 62076208, U20A20227)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Lidan Wang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Ji’e, M., Wang, L. et al. Memristor-based chaotic system with abundant dynamical behaviors and its application. Eur. Phys. J. Plus 136, 1086 (2021). https://doi.org/10.1140/epjp/s13360-021-02081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02081-9

Navigation