Skip to main content
Log in

Shannon entropies of asymmetric multiple quantum well systems with a constant total length

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We calculate the Shannon entropies numerically for a rectangular asymmetric multiple quantum well system with a constant total length. This quantum system is designed as an asymmetric multiple well with equal barriers but unequal arithmetic sequence (AS) wells. We show how the number of wells and confining potential depth affect the Shannon entropy density and the Shannon entropy. When increasing the confined potential depth \(V_{\mathrm{conf}}\), the magnitude of the position entropy density decreases while that of the momentum entropy density increases, but there is a very slight difference when the confined potential depth reaches a large value. Also, the oscillation frequency of the position entropy density inside the quantum barriers decreases while that of the position entropy density inside the quantum wells increases. When the potential well depth reaches a large value, the moving particle is mainly confined in a relatively wide potential well, and the position entropy density disappears in other barriers and potential wells. As the number of wells increases, the oscillation frequency of the position entropy density decreases inside the barriers but increases inside the quantum wells. It is very interesting to see that the \(S_{x}\) and \(S_{p}\) do not always decrease or increase monotonically with the confined potential depth \(V_{\mathrm{conf}}\), but their sum always satisfies the BBM inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    Article  Google Scholar 

  2. J.S. Dehesa, A. Martínez-Finkelshtein, V.N. Sorokin, Mol. Phys. 104, 613 (2006)

    Article  ADS  Google Scholar 

  3. E. Aydiner, C. Orta, R. Sever, Int. J. Mod. Phys. B 22, 231 (2008)

    Article  ADS  Google Scholar 

  4. R.J. Yañez, W. van Assche, J.S. Dehesa, Phys. Rev. A 50, 3065 (1994)

    Article  ADS  Google Scholar 

  5. V. Majerník, T. Opatrný, J. Phys. A 29, 2187 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. M.W. Coffey, Can. J. Phys. 85, 733 (2007)

    Article  ADS  Google Scholar 

  7. S.H. Patil, K.D. Sen, Int. J. Quant. Chem. 2007, 107 (1864)

    Google Scholar 

  8. G.H. Sun, S.H. Dong, Phys. Scr. 87, 045003 (2013)

    Article  ADS  Google Scholar 

  9. G. Yañez-Navarro, G.H. Sun, T. Dytrich, K.D. Launey, S.H. Dong, J.P. Draayer, Ann. Phys. 348, 153 (2014)

    Article  ADS  Google Scholar 

  10. R.K. Hazra, M. Ghosh, S.P. Bhattacharyya, Chem. Phys. Lett. 460, 209 (2008)

    Article  ADS  Google Scholar 

  11. G.H. Sun, S.H. Dong, K.D. Launey, T. Dytrych, J.P. Draayer, Int. J. Quant. Chem. 115, 891 (2015)

    Article  Google Scholar 

  12. V. Majerník, E. Majerníková, J. Phys. A 35, 5751 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. X.D. Song, G.H. Sun, S.H. Dong, Phys. Lett. A 379, 1402 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.R. Plastino, A. Plastino, Phys. Lett. A 181, 446 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Garcias, M. Casas, A. Plastino, Annalen der Physik 507(4), 329 (1995)

    Article  ADS  Google Scholar 

  16. A.R. Plastino, M. Casas, A. Plastino, A. Puente, Phys. Rev. A 52(4), 2601 (1995)

    Article  ADS  Google Scholar 

  17. L. Diambra, A. Plastino, Phys. Rev. E 53(1), 1021 (1996)

    Article  ADS  Google Scholar 

  18. M. Casas, F. Pennini, A. Plastino, Phys. Lett. A 235(5), 457 (1997)

    Article  ADS  Google Scholar 

  19. F. Pennini, A. Plastino, A.R. Plastino, Phys. Lett. A 208(4–6), 309 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Vignat, A. Plastino, A.R. Plastino, J.S. Dehesa, Physica A 391, 1068 (2012)

    Article  ADS  Google Scholar 

  21. G.H. Sun, D. Popov, O. Camacho-Nieto, S.H. Dong, Chin. Phys. B 24(10), 100303 (2015)

    Article  ADS  Google Scholar 

  22. G.H. Sun, S.H. Dong, N. Saad, Ann. Phys. 525(12), 934 (2013)

    Article  MathSciNet  Google Scholar 

  23. G.H. Sun, M.A. Avila Aoki, S.H. Dong, Chin. Phys. B 22, 050302 (2013)

    Article  Google Scholar 

  24. X.D. Song, S.H. Dong, Y. Zhang, Chin. Phys. B 25(5), 050302 (2016)

    Article  Google Scholar 

  25. J.C. Angulo, J. Antolin, A. Zarzo, J.C. Cuchi, Eur. Phys. J. D 7, 479 (1999)

    Article  ADS  Google Scholar 

  26. A. Orłowski, Phys. Rev. A 56, 2545 (1997)

    Article  ADS  Google Scholar 

  27. S.J.C. Salazar, H.G. Laguna, V. Prasad, R.P. Sagar, Int. J. Quan. Phys. 120(11), e26188 (2020)

    Google Scholar 

  28. A.N. Ikot, G.J. Rampho, P.O. Amadi, U.S. Okorie, M.J. Sithole, M.L. Lekala, Int. J. Quan. Phys. 120(24), e26410 (2020)

    Google Scholar 

  29. C.A. Onate, M.C. Onyeaju, A. Abolarinwa, A.F. Lukman, Sci. Rep. 10(1), 17542 (2020)

    Article  ADS  Google Scholar 

  30. S.J.C. Salazar, H.G. Laguna, B. Dahiya, V. Prasad, R.P. Sagar, Eur. Phys. J. D 75(4), 127 (2021)

    Article  ADS  Google Scholar 

  31. S.J.C. Salazar, H.G. Laguna, V. Prasad, R.P. Sagar, Int. J. Quan. Chem. 120(11), e26188 (2020)

    Article  Google Scholar 

  32. J.S. Dehesa, E.D. Belega, I.V. Toranzo, A.I. Aptekarev, Int. J. Quan. Chem. 119(18), e25977 (2019)

    Article  Google Scholar 

  33. N. Mukherjee, A.K. Roy, Int. J. Quan. Chem. 118(14), e25596 (2018)

    Article  Google Scholar 

  34. A. Ghosal, N. Mukherjee, A.K. Roy, Annalen der Physik 528(11–12), 796 (2016)

    Article  ADS  Google Scholar 

  35. S. Das Sarma, S. He, X.C. Xie, Phys. Rev. Lett. 61, 2144 (1988)

    Article  ADS  Google Scholar 

  36. L. Zhang, L.Y. Gong, P.Q. Tong, Eur. Phys. J. B 80, 485 (2011)

    Article  ADS  Google Scholar 

  37. H. Hiramoto, M. Kohmoto, Phys. Rev. Lett. 62, 2714 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  38. X.B. Cai, X.F. Xuan, Opt. Commun. 240, 227 (2004)

    Article  ADS  Google Scholar 

  39. X.I. Saldaña, D.A. Contreras-Solorio, E. López-Cruz, Rev. Mex. de Fis S 53(7), 310 (2007)

    Google Scholar 

  40. M. Solaimani, M. Izadifard, H. Arabshahi, M.R. Sarkardei, J. Lumin. 134, 699 (2013)

    Article  Google Scholar 

  41. M. Solaimani, Solid State Commun. 200, 66 (2014)

    Article  ADS  Google Scholar 

  42. M. Solaimani, J. Nonlinear Opt. Phys. Matt. 23(4), 1450050 (2014)

    Article  ADS  Google Scholar 

  43. M. Solaimani, M. Ghalandari, L. Lavaie, J. Opt. Soc. Am. B 33, 420 (2016)

    Article  Google Scholar 

  44. M. Solaimani, Chin. Phys. Lett. 32, 117304 (2015)

    Article  ADS  Google Scholar 

  45. M. Solaimani, G.H. Sun, S.H. Dong, Chin. Phys. B 27, 040301 (2018)

    Article  ADS  Google Scholar 

  46. V.K. Kononenko, Proc. SPIE 1724, 89 (1992)

    Article  ADS  Google Scholar 

  47. S. Ikeda, A. Shimizu, Appl. Phys. Lett. 59, 504 (1991)

    Article  ADS  Google Scholar 

  48. D. Teng, Y.H. Lo, C.H. Lin, L.F. Eastman, Appl. Phys. Lett. 60, 2729 (1992)

    Article  ADS  Google Scholar 

  49. V.K. Kononenko, A.A. Afonenko, I.S. Manak, S.V. Nalivko, Opto-Electron. Rev. 8, 241 (2000)

    Google Scholar 

  50. I. Brener, E. Cohen, A. Ron, L. Pfeiffer, Phys. Rev. B 42, 11035 (1990)

    Article  ADS  Google Scholar 

  51. S. Fafard, Y.H. Zhang, J.L. Merz, Phys. Rev. B 48, 12308 (1993)

    Article  ADS  Google Scholar 

  52. A. Liu, Phys. Rev. B 55, 7101 (1997)

    Article  ADS  Google Scholar 

  53. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flanner, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, New York, 2007)

    MATH  Google Scholar 

  54. M. Solaimani, M. Ghalandari, M. Nejati, AIP Adv. 11, 025309 (2021)

    Article  ADS  Google Scholar 

  55. C. Nayak, A. Aghajamali, M. Solaimani, J.K. Rakshit, D. Panigrahy, K.V.P. Kumar, B. Ramakrishna, Optik 222, 165290 (2020)

    Article  ADS  Google Scholar 

  56. K. Ben Abdelaziz, J. Zaghdoudi, M. Kanzari, B. Rezig, J. Opt. A: Pure Appl. Opt. 7, 544 (2005)

    Article  ADS  Google Scholar 

  57. C. Nayak, A. Aghajamali, T. Alamfard, A. Saha, Physica B: Cond. Matt. 525, 41 (2017)

    Article  ADS  Google Scholar 

  58. H.A. Gómez-Urrea, J. Escorcia-García, C.A. Duque, M.E. Mora-Ramos, Photonics Nanostruct. - Fundam. Appl. 27, 1 (2017)

    Article  ADS  Google Scholar 

  59. Y. Bouazzi, M. Kanzari, Adv. Electromag. 1, 1 (2012)

    Article  ADS  Google Scholar 

  60. W. Beckner, Ann. Math. 102, 159 (1975)

    Article  MathSciNet  Google Scholar 

  61. I. Białynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the kind referee for making invaluable suggestions and criticisms, which have improved the manuscript greatly. This work is supported partially by the 20210414-SIP-IPN, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Hua Sun or Shi-Hai Dong.

Additional information

This work was started on sabbatical leave of IPN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo, R.S., Gil-Barrera, C.A., Sun, GH. et al. Shannon entropies of asymmetric multiple quantum well systems with a constant total length. Eur. Phys. J. Plus 136, 1060 (2021). https://doi.org/10.1140/epjp/s13360-021-02057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02057-9

Navigation