Skip to main content
Log in

New coupled rogue waves propagating backward and forward and modulation instability in a composite nonlinear right- and left-handed transmission line

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate new exact coupled rogue wave solutions of the coupled nonlinear Schrödinger equation system in a nonlinear left- and right-handed composite transmission line by the semi-discrete approximation. By means of this approximation, we found coupled type I and II rogue waves of the above-mentioned equation system. The solutions obtained are expressed in the form of new coupled rogue wave solutions of type I and II. This approximation used is efficient, powerful and can be considered as an alternative to establish new rogue waves of different types of the Schrödinger equation system applied in mathematical physics. In addition, in order to display the underlying dynamics of the coupled type I and II rogue wave solutions obtained, 3D plots are drawn. The computational results obtained show not only the efficiency and robustness of this approximation, but also the potential applicability of this technique to other significant nonlinear Schrödinger equation systems. These results obtained show that coupled rogue waves well exist in the nonlinear left- and right-handed composite transmission line and that the zones of instability could also gradually disappear when this line operates mainly at low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. G.V. Eleftheriades, K.G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  2. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  3. R. Marques, F. Martin, M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, vol. 183 (Wiley, Hoboken, 2011)

    Google Scholar 

  4. A. Lai, T. Itoh, C. Caloz, Composite right/left-handed transmission line metamaterials. IEEE Microw. Mag. 5(3), 34–50 (2004)

    Article  Google Scholar 

  5. D.A. Powell, I.V. Shadrivov, Y.S. Kivshar, Nonlinear electric metamaterials. Appl. Phys. Lett. 95(8), 084102 (2009)

    Article  ADS  Google Scholar 

  6. J. Carbonell, V.E. Boria, D. Lippens, Nonlinear effects in split ring resonators loaded with heterostructure barrier varactors. Microw. Opt. Technol. Lett. 50(2), 474–479 (2008)

    Article  Google Scholar 

  7. A.P. Slobozhanyuk, P.V. Kapitanova, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar, Metamaterials with tunable nonlinearity. JETP Lett. 95(12), 613–617 (2012)

    Article  ADS  Google Scholar 

  8. S. Feng, K. Halterman, Parametrically shielding electromagnetic fields by nonlinear metamaterials. Phys. Rev. Lett. 100(6), 063901 (2008)

    Article  ADS  Google Scholar 

  9. A. Chowdhury, J.A. Tataronis, Long wave-short wave resonance in nonlinear negative refractive index media. Phys. Rev. Lett. 100(15), 153905 (2008)

    Article  ADS  Google Scholar 

  10. A.B. Kozyrev, D.W. van der Weide, Nonlinear wave propagation phenomena in left-handed transmission-line media. IEEE 53(1), 238–245 (2005)

    Google Scholar 

  11. K. Narahara, T. Nakamichi, T. Suemitsu, T. Otsuji, E. Sano, Development of solitons in composite right-and left-handed transmission lines periodically loaded with Schottky varactors. J. Appl. Phys. 102(2), 024501 (2007)

    Article  ADS  Google Scholar 

  12. D. Yemélé, F. Kenmogné, Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line. Phys. Lett. A 373(42), 3801–3809 (2009)

    Article  ADS  MATH  Google Scholar 

  13. A.B. Kozyrev, D.W. Van Der Weide, Nonlinear left-handed transmission line metamaterials. J. Phys. D: Appl. Phys. 41(17), 173001 (2008)

    Article  ADS  Google Scholar 

  14. J. Ogasawara, K. Narahara, Experimental characterization of left-handed transmission lines with regularly spaced Schottky varactors. IEICE Electron. Express 7(9), 608–614 (2010)

    Article  Google Scholar 

  15. L.Q. English, S.G. Wheeler, Y. Shen, G.P. Veldes, N. Whitaker, P.G. Kevrekidis, D.J. Frantzeskakis, Backward-wave propagation and discrete solitons in a left-handed electrical lattice. Phys. Lett. A 375(9), 1242–1248 (2011)

    Article  ADS  Google Scholar 

  16. Z. Wang, Y. Feng, B. Zhu, J. Zhao, T. Jiang, Dark Schrödinger solitons and harmonic generation in left-handed nonlinear transmission line. J. Appl. Phys. 107(9), 094907 (2010)

    Article  ADS  Google Scholar 

  17. T. Yoshinaga, N. Sugimoto, T. Kakutani, Nonlinear wave interactions on a discrete transmission line. J. Phys. Soc. Japan 50(6), 2122–2128 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  18. J.M. Bilbault, P. Marquié, B. Michaux, Modulational instability of two counterpropagating waves in an experimental transmission line. Phys. Rev. E51(1), 817 (1995)

    ADS  Google Scholar 

  19. M. Remoissenet, Basic concepts and the discovery of solitons, Waves Called Solitons (Springer, Berlin, 1999), pp. 1–11

  20. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic press, USA, 2003)

    Google Scholar 

  21. M.J. Ablowitz, M.A. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, vol. 302 (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  22. F. Yu, K.G. Lyon, E.C. Kan, A low-power UWB-IR transmitter by tapered nonlinear transmission lines. IEEE Microw. Wirel. Compon. Lett. 22(12), 618–620 (2012)

    Article  Google Scholar 

  23. J.-W.B. Bragg, I.I.I. Sullivan, W. William, D. Mauch, A.A. Neuber, J.C. Dickens, All solid-state high power microwave source with high repetition frequency. Rev. Sci. Instrum. 84(5), 054703 (2013)

    Article  ADS  Google Scholar 

  24. M.J.W. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman, K.S. Giboney, GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling. IEEE Trans. Microw. Theory Tech. 39(7), 1194–1204 (1991)

    Article  ADS  Google Scholar 

  25. M. Tan, C.Y. Su, W.J. Anklam, 7* electrical pulse compression on an inhomogeneous nonlinear transmission line. Electron. Lett. 24(4), 213–215 (1988)

    Article  ADS  Google Scholar 

  26. W. Xiao-Li, Z. Wei-Guo, Z. Bao-Guo, Z. Hai-Qiang, Rogue waves of the higher-order dispersive nonlinear Schrödinger equation. Commun. Theor. Phys. 58(4), 531 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. P.L. Christiansen, M.P. Sorensen, A.C. Scott, Nonlinear Science at the Dawn of the 21st Century, vol. 542 (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  28. S.B. Leble, Nonlinear waves in optical waveguides and soliton theory applications, Optical Solitons, Theoretical and Experimental Challenges (2003), pp. 71–204

  29. A.I. Dyachenko, V.E. Zakharov, Modulation instability of Stokes wave freak wave. J. Exp. Theor. Phys. Lett. 81(6), 255–259 (2005)

    Article  Google Scholar 

  30. J.K. Duan, B.L. Yu., Q. Wei, M.H. Fan, Super rogue waves in coupled electric transmission lines. Indian J. Phys. 94, 879–883 (2020)

  31. A. Gomel, A. Chabchoub, M. Brunetti, S. Trillo, Jérôme Kasparian, A. Armaroli, Stabilization of extreme wave events by phase space manipulation. arXiv:2011.02247 (2020)

  32. W.-P. Su, J.R. Schrieffer, A.J. Heeger, Soliton excitations in polyacetylene. Phys. Rev. B22(4), 2099 (1980)

    Article  ADS  Google Scholar 

  33. A.D. Boardman, K. Xie, Bright spatial soliton dynamics in a symmetric optical planar waveguide structure. Phys. Rev. A50(2), 1851 (1994)

    Article  ADS  Google Scholar 

  34. N.N. Akhmediev, A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, Florida, 1997)

    MATH  Google Scholar 

  35. A. Scott, Waves Called Solitons: Concepts and Experiments. JSTOR (2001)

  36. L. Wang, Q. Song, X. Guo, N. Wang, X. Wang, Y. Han, J. Xie, Synthesis of hollow spindle-like CaMoO4: Ln3+ (Tb, Eu) phosphors for detection of iron () ions. Optik 185, 957–964 (2019)

    Article  ADS  Google Scholar 

  37. V.E. Zakharov, A.A. Gelash, On the nonlinear stage of the modulational instability. arXiv:1212.1393v3 (2012)

  38. A.G. Mackie, The application of the hodograph method to the flow past fixed bodies. Symposium Transsonicum, 51–56 (1964)

  39. E. Mjølhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16(3), 321–334 (1976)

    Article  ADS  Google Scholar 

  40. S.-F. Tian, Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method. J. Phys. A: Math. Theor. 50(39), 395204 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Singh, R.K. Gupta, Soliton and quasi-periodic wave solutions for b-type Kadomtsev-Petviashvili equation. Indian J. Phys. 91(11), 1345–1354 (2017)

    Article  ADS  Google Scholar 

  42. L.-L. Feng, T.-T. Zhang, Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation. Appl. Math. Lett. 78, 133–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Mukherjee, A. Kundu, Novel nonlinear wave equation: regulated rogue waves and accelerated soliton solutions. Phys. Lett. A 383(10), 985–990 (2019)

    Article  ADS  MATH  Google Scholar 

  44. C.-R. Zhang, B. Tian, X.-Y. Wu, Y.-Q. Yuan, X.-X. Du, Rogue waves and solitons of the coherently-coupled nonlinear Schrödinger equations with the positive coherent coupling. Physica Scripta 93(9), 095202 (2018)

    Article  ADS  Google Scholar 

  45. W.-Q. Peng, S.-F. Tian, T.-T. Zhang, Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation. EPL (Europhys. Lett.) 123(5), 50005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  46. X.-B. Wang, T.-T. Zhang, M.-J. Dong, Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation. Appl. Math. Lett. 86, 298–304 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Z.-Z. Lan, J.-J. Su, Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlin. Dyn. 96(4), 2535–2546 (2019)

    Article  MATH  Google Scholar 

  48. Z.-Z. Lan, W.-Q. Hu, B.-L. Guo, General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Appl. Math. Model. 73, 695–714 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Z. Lan, Periodic, breather and rogue wave solutions for a generalized (3+ 1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics. Appl. Math. Lett. 94, 126–132 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Z.-Z. Lan, Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber. Appl. Math. Lett. 98, 128–134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. C.-Y. Qin, S.-F. Tian, X.-B. Wang, T.-T. Zhang, J. Li, Rogue waves, bright-dark solitons and traveling wave solutions of the (3+ 1)-dimensional generalized Kadomtsev-Petviashvili equation. Comput. Math. Appl. 75(12), 4221–4231 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. X.-B. Wang, S.-F. Tian, C.-Y. Qin, T.-T. Zhang, Dynamics of the breathers, rogue waves and solitary waves in the (2+ 1)-dimensional Ito equation. Appl. Math. Lett. 68, 40–47 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Z. Lan, Soliton and breather solutions for a fifth-order variable-coefficient nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 102, 106132 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Z.-Z. Lan, B.-L. Guo, Nonlinear waves behaviors for a coupled generalized nonlinear Schrodinger-Boussinesq system in a homogeneous magnetized plasma. Nonlin. Dyn. 100(4), 3771–3784 (2020)

    Article  Google Scholar 

  55. X.-Y. Gao, Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. M.-J. Dong, S.-F. Tian, X.-W. Yan, L. Zou, Solitary waves, homoclinic breather waves and rogue waves of the (3+ 1)-dimensional Hirota bilinear equation. Comput. Math. Appl. 75(3), 957–964 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  57. W.-Q. Peng, S.-F. Tian, T.-T. Zhang, Analysis on lump, lumpoff and rogue waves with predictability to the (2+ 1)-dimensional B-type Kadomtsev-Petviashvili equation. Phys. Lett. A 382(38), 2701–2708 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Z.-Z. Lan, Pfaffian and extended Pfaffian solutions for a (3+ 1)-dimensional generalized wave equation. Physica Scripta 94(12), 125221 (2019)

    Article  ADS  Google Scholar 

  59. X.-Y. Wu, B. Tian, L. Liu, Y. Sun, Rogue waves for a variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics. Comput. Math. Appl. 76(2), 215–223 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. X.-X. Du, B. Tian, X.-Y. Wu, H.-M. Yin, C.-R. Zhang, Lie group analysis, analytic solutions and conservation laws of the (3+ 1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electron-positron-ion plasma. Euro. Phys. J. Plus 133(9), 378 (2018)

    Article  Google Scholar 

  61. L. Liu, B. Tian, Y.-Q. Yuan, Z. Du, Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations. Phys. Rev. E97(5), 052217 (2018)

    ADS  MathSciNet  Google Scholar 

  62. Y.-Q. Yuan, B. Tian, L. Liu, X.-Y. Wu, Y. Sun, Solitons for the (2+ 1)-dimensional Konopelchenko-Dubrovsky equations. J. Math. Anal. Appl. 460(1), 476–486 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. X.-H. Zhao, B. Tian, X.-Y. Xie, X.-Y. Wu, Y. Sun, Y.-J. Guo, Solitons, Bäcklund transformation and Lax pair for a (2+ 1)-dimensional Davey-Stewartson system on surface waves of finite depth. Waves Random Complex Media 28(2), 356–366 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  64. X.-Y. Gao, Mathematical view with observational/experimental consideration on certain (2+ 1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  65. V.E. Zakharov, A.B. Shabat, Interaction between solitons in a stable medium. Sov. Phys. JETP 37(5), 823–828 (1973)

    ADS  Google Scholar 

  66. N.K. Vitanov, A. Chabchoub, N. Hoffmann, Deep-water waves: on the nonlinear Schrödinger equation and its solutions. J. Theor. Appl. Mech. 43(2), 43–54 (2013)

    Article  MATH  Google Scholar 

  67. M. Emamuddin, S. Yasmin, A.A. Mamun, Higher order nonlinear equations for the dust-acoustic waves in a dusty plasma with two temperature-ions and nonextensive electrons. Phys. Plasmas 20(4), 043705 (2013)

    Article  ADS  Google Scholar 

  68. M. Emamuddin, M.M. Masud, A.A. Mamun, Dust-acoustic solitary waves in a magnetized dusty plasmas with nonthermal ions and two-temperature nonextensive electrons. Astrophys. Space Sci. 349(2), 821–828 (2014)

    Article  ADS  Google Scholar 

  69. J. Tamang, K. Sarkar, A. Saha, Solitary wave solution and dynamic transition of dust ion acoustic waves in a collisional nonextensive dusty plasma with ionization effect. Physica A: Statist. Mech. Appl. 505, 18–34 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  70. Y.V. Bludov, V.V. Konotop, N. Akhmediev, Vector rogue waves in binary mixtures of Bose-Einstein condensates. Euro. Phys. J. Spec. Top. 185(1), 169–180 (2010)

    Article  ADS  Google Scholar 

  71. G.V. Kolmakov, P.V.E. McClintock, S.V. Nazarenko, Wave turbulence in quantum fluids. Proc. Natl. Acad. Sci. 111(Supplement 1), 4727–4734 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. J.S. He, S. Xu, K. Porsezian, P.T. Dinda, D. Mihalache, B.A. Malomed, E. Ding, Handling shocks and rogue waves in optical fibers. Rom. J. Phys. 62, 203 (2017)

    Google Scholar 

  73. F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, B. Kibler, Observation of a group of dark rogue waves in a telecommunication optical fiber. Phys. Rev. A97(1), 013852 (2018)

    Article  ADS  Google Scholar 

  74. J.M. Dudley, F. Dias, M. Erkintalo, G. Genty, Nat. Photon. 8(2014), 755 (2014)

    Article  ADS  Google Scholar 

  75. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F.T. Arecchi, Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528(2), 47–89 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  76. G.P. Veldes, J. Cuevas, P.G. Kevrekidis, D.J. Frantzeskakis, Coupled backward-and forward-propagating solitons in a composite right-and left-handed transmission line. Phys. Rev. E 88(1), 013203 (2013)

    Article  ADS  Google Scholar 

  77. P. Marquie, J.-M. Bilbault, M. Remoissenet, Generation of envelope and hole solitons in an experimental transmission line. Phys. Rev. E 49(1), 828 (1994)

    Article  ADS  Google Scholar 

  78. G.P. Veldes, J. Cuevas, P.G. Kevrekidis, D.J. Frantzeskakis, Quasidiscrete microwave solitons in a split-ring-resonator-based left-handed coplanar waveguide. Phys. Rev. E 83(4), 046608 (2011)

    Article  ADS  Google Scholar 

  79. S. Abdoulkary, A.D. Aboubakar, M. Aboubakar, A. Mohamadou, L. Kavitha, Solitary wave solutions and modulational instability analysis of the nonlinear Schrödinger equation with higher-order nonlinear terms in the left-handed nonlinear transmission lines. Commun. Nonlin. Sci. Numer. Simul. 22(1–3), 1288–1296 (2015)

    Article  MATH  Google Scholar 

  80. D. Ahmadou, M. Justin, B.M. Hubert, G. Betchewe, D.Y. Serge, K.T. Crépin, Dark solitons and modulational instability of the nonlinear left-handed transmission electrical line with fractional derivative order. Physica Scripta 95(10), 105803 (2020)

    Article  ADS  Google Scholar 

  81. D. Wen-Shan, H. Xue-Ren, S. Yu-Ren, L. Ke-Pu, S. Jian-An, Weakly two-dimensional solitary waves on coupled nonlinear transmission lines. Chin. Phys. Lett. 19(9), 1231 (2002)

    Article  ADS  Google Scholar 

  82. W.-S. Duan, Nonlinear waves propagating in the electrical transmission line. EPL (Europhys. Lett.) 66(2), 192 (2004)

    Article  ADS  Google Scholar 

  83. J.K. Duan, Y.L. Bai, Rogue wave in coupled electric transmission line. Indian J. Phys. 92(3), 369–375 (2018)

    Article  ADS  Google Scholar 

  84. N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373(6), 675–678 (2009)

    Article  ADS  MATH  Google Scholar 

  85. T.B. Benjamin, J.E. Feir, The disintegration of wave trains on deep water. J. Fluid Mech. 27(3), 417–430 (1967)

    Article  ADS  MATH  Google Scholar 

  86. D.H. Peregrine, Interaction of water waves and currents. Adv. Appl. Mech. 16, 9–117 (1976)

    Article  MATH  Google Scholar 

  87. K. Tai, A. Hasegawa, A. Tomita, Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56(2), 135 (1986)

    Article  ADS  Google Scholar 

  88. T. Taniuti, H. Washimi, Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys. Rev. Lett. 21(4), 209 (1968)

    Article  ADS  Google Scholar 

  89. S. Watanabe, Self-modulation of a nonlinear ion wave packet. J. Plasma Phys. 17(3), 487–501 (1977)

    Article  ADS  Google Scholar 

  90. H. Bailung, Y. Nakamura, Observation of modulational instability in a multi-component plasma with negative ions. J. Plasma Phys. 50(2), 231–242 (1993)

    Article  ADS  Google Scholar 

  91. L. Salasnich, A. Parola, L. Reatto, Modulational instability and complex dynamics of confined matter-wave solitons. Phys. Rev. Lett. 91(8), 080405 (2003)

    Article  ADS  Google Scholar 

  92. L.-C. Zhao, L. Ling, Quantitative relations between modulational instability and several well-known nonlinear excitations. JOSA B33(5), 850–856 (2016)

    ADS  Google Scholar 

  93. L.-C. Zhao, G.-G. Xin, Z.-Y. Yang, Rogue-wave pattern transition induced by relative frequency. Phys. Rev. E 90(2), 022918 (2014)

    Article  ADS  Google Scholar 

  94. L. Wang, J. He, H. Xu, J. Wang, K. Porsezian, Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E95(4), 042217 (2017)

    ADS  MathSciNet  Google Scholar 

  95. D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions. The ANZIAM J. 25(1), 16–43 (1983)

    MATH  Google Scholar 

  96. V.I. Shrira, V.V. Geogjaev, What makes the peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67(1–2), 11–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  97. K. Manikandan, M. Senthilvelan, R.A. Kraenkel, On the characterization of vector rogue waves in two-dimensional two coupled nonlinear Schrödinger equations with distributed coefficients. Euro. Phys. J. B 89(10), 1–11 (2016)

    Article  Google Scholar 

  98. D. Ahmadou, A. Houwe, J. Mibaile, G. Betchewe, S.Y. Doka, K.T. Crepin et al., Solitary waves and modulation instability with the influence of fractional derivative order in nonlinear left-handed transmission line. Opt. Quant. Electron. 53(7), 405 (2021)

    Article  Google Scholar 

  99. A.S. Slvere, M. Justin, V. David, M. Joseph, G. Betchewe, Impact of fractional effects on modulational instability and bright soliton in fractional optical metamaterials. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1880668

  100. G. Xu, K. Hammani, A. Chabchoub, J.M. Dudley, B. Kibler, C. Finot, Phase evolution of Peregrine-like breathers in optics and hydrodynamics. Phys. Rev. E 99(1), 012207 (2019)

    Article  ADS  Google Scholar 

  101. A. Chabchoub, B. Kibler, J.M. Dudley, N. Akhmediev, Hydrodynamics of periodic breathers. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 372(2027), 20140005 (2014)

    Article  ADS  Google Scholar 

  102. A. Chabchoub, N.P. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106(20), 204502 (2011)

    Article  ADS  Google Scholar 

  103. A. Chabchoub, R.H.J. Grimshaw, The hydrodynamic nonlinear Schrödinger equation: space and time. Fluids 1(3), 23 (2016)

    Article  Google Scholar 

  104. A. Calini, C.M. Schober, Numerical investigation of stability of breather-type solutions of the nonlinear Schrödinger equation. Nat. Hazards Earth Syst. Sci. 14(6), 1431–1440 (2014)

    Article  ADS  Google Scholar 

  105. A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 2(1), 011015 (2012)

    Google Scholar 

  106. B. Kibler, A. Chabchoub, A. Gelash, N. Akhmediev, V.E. Zakharov, Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity. Phys. Rev. X 5(4), 041026 (2015)

    Google Scholar 

  107. M. Onorato, S. Resitori, F. Baronio, Rogue and Shock Waves in Nonlinear Dispersive Media, vol. 926 (Springer, Berlin, 2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadou, D., Alphonse, H., Justin, M. et al. New coupled rogue waves propagating backward and forward and modulation instability in a composite nonlinear right- and left-handed transmission line. Eur. Phys. J. Plus 136, 1088 (2021). https://doi.org/10.1140/epjp/s13360-021-02054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02054-y

Navigation