Skip to main content
Log in

Local description of S-matrix in quantum field theory in curved spacetime using Riemann-normal coordinate

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The success of the S-matrix in quantum field theory in Minkowski spacetime naturally demands the extension of the construction of the S-matrix in a general curved spacetime in a covariant manner. However, it is well-known that a global description of the S-matrix may not exist in an arbitrary curved spacetime. Here, we give a local construction of S-matrix in quantum field theory in curved spacetime using Riemann-normal coordinates which mimics the methods, generally used in Minkowski spacetime. Using this construction, the scattering amplitudes and cross sections of some scattering processes are computed in a generic curved spacetime. Further, it is also shown that these observables can be used to probe features of curved spacetime as these local observables carry curvature-dependent corrections. Moreover, the compatibility of the local construction of the S-matrix with the spacetime symmetries is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Georges Aad, Tatevik Abajyan, B Abbott, J Abdallah, S Abdel Khalek, Ahmed Ali Abdelalim, O Abdinov, R Aben, B Abi, M Abolins, et al. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012

  2. Cms Collaboration et al. Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. arXiv preprint arXiv:1207.7235, 2012

  3. Nicholas David Birrell, Nicholas David Birrell, and PCW Davies. Quantum fields in curved space. Number 7. Cambridge university press, 1984

  4. Stephen A Fulling et al. Aspects of quantum field theory in curved spacetime, volume 17. Cambridge university press, 1989

  5. Robert M Wald. Quantum field theory in curved spacetime and black hole thermodynamics. University of Chicago Press, 1994

  6. Robert M. Wald, Existence of the s matrix in quantum field theory in curved space-time. Ann. Phys. 118, 490–510 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  7. Henry P Stapp. Correspondence and analyticity. Publications of the Research Institute for Mathematical Sciences, 40(3):883–903, 2004

  8. Timothy J Hollowood and Graham M Shore. The causal structure of qed in curved spacetime: analyticity and the refractive index. Journal of High Energy Physics, 2008(12):091, 2008

  9. John L Friedman, Nicolas J Papastamatiou, and Jonathan Z Simon. Unitarity of interacting fields in curved spacetime. Physical Review D, 46(10):4442, 1992

  10. Steven B Giddings. The gravitational s-matrix: Erice lectures. Subnucl. Ser, 48:93, 2013

  11. Robert M Wald. On particle creation by black holes. Communications in Mathematical Physics, 45(1):9–34, 1975

  12. Rhett Byron Herman. Generalized Dewitt-Schwinger point-splitting expansions for the charged scalar field in curved space. PhD thesis, Montana State University-Bozeman, College of Letters & Science, 1996

  13. S.M. Christensen, Regularization, renormalization, and covariant geodesic point separation. Phys. Rev. D 17, 946–963 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  14. S.M. Christensen, Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point separation method. Phys. Rev. D 14, 2490–2501 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. Donald Marolf, Ian A Morrison, and Mark Srednicki. Perturbative s-matrix for massive scalar fields in global de sitter space. Classical and Quantum Gravity, 30(15):155023, 2013

  16. Tobias Hofbaur. On the stability of a de Sitter universe with self-interacting massive particles. PhD thesis, Munich U., 2014

  17. Abhay Ashtekar and Anne Magnon. Quantum fields in curved space-times. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 346(1646):375–394, 1975

  18. Max Dohse, Robert Oeckl, Complex structures for an s-matrix of klein-gordon theory on ads spacetimes. Classical and Quantum Gravity 32(10), 105007 (2015)

  19. Martin B Einhorn and Finn Larsen. Interacting quantum field theory in de sitter vacua. Physical Review D, 67(2):024001, 2003

  20. Raphael Bousso, Cosmology and the s matrix. Physical Review D 71(6), 064024 (2005)

  21. Tom Banks and Willy Fischler. M-theory observables for cosmological space-times. arXiv preprint  arXiv:hep-th/0102077, 2001

  22. Simeon Hellerman, Nemanja Kaloper, Leonard Susskind, String theory and quintessence. J. High Energy Phys. 2001(06), 003 (2001)

    Article  MathSciNet  Google Scholar 

  23. Willy Fischler, Amir Kashani-Poor, Robert McNees, Sonia Paban, The acceleration of the universe, a challenge for string theory. J. High Energy Phys. 2001(07), 003 (2001)

    Article  MathSciNet  Google Scholar 

  24. Daniele Colosi, Max Dohse, and Robert Oeckl. S-matrix for ads from general boundary qft. In Journal of Physics: Conference Series, volume 360, page 012012. IOP Publishing, 2012

  25. Marcus Spradlin, Anastasia Volovich, Vacuum states and the s matrix in ds/cft. Phys. Rev. D 65(10), 104037 (2002)

  26. Sayan Kar, Soumitra Sengupta, The raychaudhuri equations: a brief review. Pramana 69(1), 49–76 (2007)

    Article  ADS  Google Scholar 

  27. George FR. Ellis, On the raychaudhuri equation. Pramana 69(1), 15–22 (2007)

    Article  ADS  Google Scholar 

  28. Donato Bini Fernando de Felice. Classical Measurements in Curved Space-Times. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1 edition, 2010

  29. TS Bunch and Leonard Parker, Feynman propagator in curved spacetime: A momentum-space representation. Physical Review D 20(10), 2499 (1979)

  30. Leonard Parker and David Toms. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1 edition, 2009

  31. V. P. Nair. Quantum field theory: A modern perspective. 2005

  32. Sanjeev S Seahra. Path integrals in quantum field theory. URL http://www. math. unb. ca/\(\sim \)seahra/resources/notes/path\_integrals. pdf, 2000

  33. Franco Cardin, Antonio Marigonda et al., Global world functions. J. Geomet. Symmet. Phys. 2, 1–17 (2004)

    MathSciNet  MATH  Google Scholar 

  34. P Teyssandier and C Le Poncin-Lafitte. Relativistic astrometry and synge’s world function. arXiv preprint astro-ph/0610462, 2006

  35. Eric Poisson, Adam Pound, Ian Vega, The motion of point particles in curved spacetime. Living Rev. Relativity 14(1), 7 (2011)

    Article  ADS  Google Scholar 

  36. LC Brewin. Riemann normal coordinates. Preprint Department of Mathematics, Monash University, Clayton, Victoria, 3168, 1997

  37. I.L. Bukhbinder, S.D. Odintsov, Renormalization group equation for the vacuum energy of a scalar field in curved space-time. Soviet Phys. J. 26(8), 721–725 (1983)

    Article  ADS  Google Scholar 

  38. I.L. Bukhbinder, S.D. Odintsov, One-loop renormalization of the yang-mills field theory in a curved space-time. Russian Phys. J. 26(4), 359–361 (1983)

    Google Scholar 

  39. I.L. Bukhbinder, S.D. Odintsov, I.L. Shapiro, Local momentum-space representation of graviton propagators in an external gravitational field and one-loop counterterms in quantum gravity. Soviet Phys. J. 27(4), 298–300 (1984)

    Article  ADS  Google Scholar 

  40. Tomohiro Inagaki, Taizo Muta, and Sergei D Odintsov. Dynamical symmetry breaking in curved spacetime. Progress of Theoretical Physics Supplement, 127:93–193, 1997

  41. T. Inagaki, S.D. Odintsov, Yu.I. Shil’Nov, Dynamical symmetry breaking in the external gravitational and constant magnetic fields. International Journal of Modern Physics A 14(04), 481–503 (1999)

  42. W Drechsler and Philip A Tuckey. On quantum and parallel transport in a hilbert bundle over spacetime. Classical and Quantum Gravity, 13(4):611, 1996

  43. Dirk Graudenz. The quantum gauge principle. In Time, Temporality, Now, pages 217–226. Springer, 1997

  44. Dirk Graudenz. On the space-time geometry of quantum systems. arXiv preprint gr-qc/9412013, 1994

  45. Eduard Prugovecki, On quantum-geometric connections and propagators in curved spacetime. Classical and Quantum Gravity 13(5), 1007 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  46. T.S. Bunch, Local momentum space and two-loop renormalizability of \(\lambda \varphi ^{4}\) field theory in curved space-time. General Relativity and Gravitation 13(7), 711–723 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  47. Matt Visser, van vleck determinants: Geodesic focusing in lorentzian spacetimes. Phys. Rev. D 47(6), 2395 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  48. Haradhan Kumar Mohajan, Space-time singularities and raychaudhuri equations. J. Natl. Sci. 1(2), 19 (2013)

    Google Scholar 

  49. Anirvan Dasgupta, Hemwati Nandan, Sayan Kar, Geodesic flows in rotating black hole backgrounds. Phys. Rev. D 85(10), 104037 (2012)

  50. Ravi Shankar Kuniyal, Rashmi Uniyal, Hemwati Nandan, and Alia Zaidi. Geodesic flows around charged black holes in two dimensions. Astrophysics and Space Science, 357(1):92, 2015

  51. Hemwati Nandan, Rashmi Uniyal, Geodesic flows in a charged black hole spacetime with quintessence. Eur. Phys. J. C 77(8), 552 (2017)

    Article  ADS  Google Scholar 

  52. Stefan Hollands and Robert M Wald. On the renormalization group in curved spacetime. Communications in mathematical physics, 237(1-2):123–160, 2003

  53. Stefan Hollands and Robert M Wald. Quantum fields in curved spacetime. Physics Reports, 574:1–35, 2015

  54. Stefan Hollands and Robert M Wald. Existence of local covariant time ordered products of quantum fields in curved spacetime. Communications in mathematical physics, 231(2):309–345, 2002

  55. Stefan Hollands and Robert M Wald. Local wick polynomials and time ordered products of quantum fields in curved spacetime. Communications in Mathematical Physics, 223(2):289–326, 2001

  56. John Dirk Walecka. The relativistic nuclear many-body problem. In New vistas in nuclear dynamics, pages 229–271. Springer, 1986

  57. Stephen J Wallace. Relativistic equation for nucleon-nucleus scattering. Annual Review of Nuclear and Particle Science, 37(1):267–292, 1987

  58. P.-G. Reinhard, The relativistic mean-field description of nuclei and nuclear dynamics. Rep. Prog. Phys. 52(4), 439 (1989)

    Article  ADS  Google Scholar 

  59. Frank Albert Dick. Scalar field theories of nucleon interactions. 2007

  60. Per Kraus and David J Griffiths. Renormalization of a model quantum field theory. American journal of physics, 60(11):1013–1023, 1992

  61. John W Norbury, Frank Dick, Ryan B Norman, and Khin Maung Maung. Cross-sections from scalar field theory. Canadian Journal of Physics, 88(3):149–156, 2010

  62. Sean Carroll, Spacetime and Geometry: An Introduction to General Relativity, International. (Pearson Education, Essex, 2013)

    Google Scholar 

  63. Charles W Misner, Kip S Thorne, John Archibald Wheeler, and David I Kaiser. Gravitation. Princeton University Press, 2017

  64. D. Seckel, Neutrino-photon reactions in astrophysics and cosmology. Phys. Rev. Lett. 80(5), 900 (1998)

    Article  ADS  Google Scholar 

  65. Huirong Yan, Alex Lazarian, Cosmic-ray scattering and streaming in compressible magnetohydrodynamic turbulence. The Astrophys. J. 614(2), 757 (2004)

    Article  ADS  Google Scholar 

  66. Francis-Yan. Cyr-Racine, Kris Sigurdson, Limits on neutrino-neutrino scattering in the early universe. Phys. Rev. D 90(12), 123533 (2014)

  67. Aaron Smith. Tolman-oppenheimer-volkoff (tov) stars. University of Texas, 2012

  68. Sante Carloni and Daniele Vernieri. Covariant tolman-oppenheimer-volkoff equations. i. the isotropic case. Physical Review D, 97(12):124056, 2018

  69. Sante Carloni and Daniele Vernieri. Covariant tolman-oppenheimer-volkoff equations. ii. the anisotropic case. Physical Review D, 97(12):124057, 2018

  70. F Nuoffer, G Bartnitzky, H Clement, A Blazevic, HG Bohlen, B Gebauer, W Von Oertzen, M Wilpert, Th Wilpert, A Lepine-Szily, et al. The equation of state for cold nuclear matter as seen in nucleus-nucleus scattering. Il Nuovo Cimento A (1971-1996), 111(8):971–975, 1998

  71. G. Bartnitzky, H. Clement, P. Czerski, H. Müther, F. Nuoffer, J. Siegler, A microscopic energy-and density-dependent effective interaction and its test by nucleus-nucleus scattering. Phys. Lett. B 386(1–4), 7–11 (1996)

    Article  ADS  Google Scholar 

  72. Enrico Costa, Paolo Soffitta, Ronaldo Bellazzini, Alessandro Brez, Nicholas Lumb, Gloria Spandre, An efficient photoelectric x-ray polarimeter for the study of black holes and neutron stars. Nature 411(6838), 662–665 (2001)

    Article  ADS  Google Scholar 

  73. Martin C Weisskopf, Ronald F Elsner, Victoria M Kaspi, Stephen L O’Dell, George G Pavlov, and Brain D Ramsey. X-ray polarimetry and its potential use for understanding neutron stars. In Neutron Stars and Pulsars, pages 589–619. Springer, 2009

  74. H. Krawczynski, A. Garson III., Q. Guo, M.G. Baring, P. Ghosh, M. Beilicke, K. Lee, Scientific prospects for hard x-ray polarimetry. Astroparticle Phys. 34(7), 550–567 (2011)

    Article  ADS  Google Scholar 

  75. Matthias Beilicke, F Kislat, A Zajczyk, Q Guo, R Endsley, M Stork, R Cowsik, P Dowkontt, S Barthelmy, T Hams, et al. Design and performance of the x-ray polarimeter x-calibur. Journal of Astronomical Instrumentation, 3(02):1440008, 2014

  76. H. Togashi, E. Hiyama, Y. Yamamoto, M. Takano, Equation of state for neutron stars with hyperons using a variational method. Phys. Rev. C 93(3), 035808 (2016)

  77. H. Togashi, M. Takano, Variational study for the equation of state of asymmetric nuclear matter at finite temperatures. Nuclear Phys. A 902, 53–73 (2013)

    Article  ADS  Google Scholar 

  78. Sanjay Reddy, Madappa Prakash, Neutrino scattering in a newly born neutron star. The Astrophys. J. 478(2), 689 (1997)

    Article  ADS  Google Scholar 

  79. Sanjay Reddy, Madappa Prakash, and James M Lattimer. Neutrino interactions in hot and dense matter. Physical Review D, 58(1):013009, 1998

Download references

Acknowledgements

SM wants to thank IISER Kolkata for supporting this work through a doctoral fellowship. He also wants to thank IIT-Jodhpur for their kind hospitality during his stay there, where a part of the work and relevant discussions were done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susobhan Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Banerjee, S. Local description of S-matrix in quantum field theory in curved spacetime using Riemann-normal coordinate. Eur. Phys. J. Plus 136, 1064 (2021). https://doi.org/10.1140/epjp/s13360-021-02037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02037-z

Navigation