Skip to main content

Advertisement

Log in

DFT investigation on the electronic, optical and thermoelectric properties of novel half-Heusler compounds ScAuX (X = Si, Ge, Sn, Pb) for energy harvesting technologies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We have made systematic effort to investigate the structural, electronic, optical, and thermoelectric properties of Scandium–Gold-based HH compounds ScAuX (X = Si, Ge, Sn, Pb) using FP-LAPW method in the frame work of DFT and semi-classical Boltzmann equations using the constant relaxation time approximation as instigated in Wien2K code. The energy versus volume curves show that the explored compounds are observed to be stable in cubic non-magnetic phase. Electronic band structures as well as DOS plots predict that all explored compounds are indirect semiconductor in nature with TB-mBJ method, having energy gaps less than 0.5 eV, which gives a prediction for them to use as promising candidates for optoelectronic as well as solar cell devices. We can observe a very good optical response for these compounds because of its narrow band gap, predicting its application in photovoltaic applications. Transport properties results predict that these compounds can be used as good thermoelectric material as they have a high figure of merit value at room temperature and it increases with temperature upto 1200 K. The factor figure of mérit (ZT) takes a maximum value of 0.82, 0.72, 0.69 and 0.80 at T = 1200 K for ScAuX (X = Si, Ge, Sn, Pb). We have used ideal p-type or n-type levels to attain optimum ZT from the computed power factor as a function of carrier concentration and chemical potential, and this will provide experimentalists with guidance to find suitable compositions to synthesize thermoelectric materials with higher performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.F. Zheng, C.X. Liu, Y.Y. Yan, Q. Wang, Renew. Sustain. Energy Rev. 32, 486 (2014)

    Article  Google Scholar 

  2. P.-R. Cha Enamullah, J. Mater. Chem. C 7, 7664 (2019)

    Article  Google Scholar 

  3. K. Kaur, Europhys. Lett. 117, 47002 (2017)

    Article  ADS  Google Scholar 

  4. C. Yu, K.T. Chau, Energy Convers. Manag. 50, 1506 (2009)

    Article  Google Scholar 

  5. G. Wu, X.B. Yu, Int. J. Pavem. Res. Technol. 5, 311 (2012)

    Google Scholar 

  6. B.I. Ismail, W.H. Ahmed, Recent Patents Electr. Eng. 2, 27 (2009)

    Article  Google Scholar 

  7. L.L. Baranowski, G.J. Snyder, E.S. Toberer, Energy Environ. Sci. 5, 9055 (2012)

    Article  Google Scholar 

  8. J. Yang, F. Stabler, J. Electron. Mater. 38, 1245 (2009)

    Article  ADS  Google Scholar 

  9. H.A. Sodano, G.E. Simmers, R. Dereux, D.J. Inman, J. Intell. Mater. Syst. Struct. 18, 3 (2007)

    Article  Google Scholar 

  10. A. Adavbiele, J. Energy Technol. Policy 3, 16–33 (2013)

    Google Scholar 

  11. Vikram, J. Kangsabanik, Enamullah and A. Alam, J. Mater. Chem.A, 2017, 5, 6131

  12. F. Heusler, Verhandl. DPG 5, 219 (1903)

    Google Scholar 

  13. D. Kieven, R. Klenk, S. Naghavi, C. Felser, T. Gruhn, Phys. Rev. B 81, 075208 (2010)

    Article  ADS  Google Scholar 

  14. S. Ouardi, C. Shekhar, G.H. Fecher, X. Kozina, G. Stryganyuk, C. Felser, S. Ueda, K. Kobayashi, Appl. Phys. Lett. 98, 211901 (2011)

    Article  ADS  Google Scholar 

  15. K.E. Babu, A. Veeraiah, D.T. Swamy, V. Veeraiah, Mater. Sci.-Poland 30, 359 (2012)

    Article  ADS  Google Scholar 

  16. T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39, 1–50 (2011)

    Article  Google Scholar 

  17. S.D. Guo, J. Alloys Compd. 663, 128 (2016)

    Article  Google Scholar 

  18. A. Tavassoli, F. Failamani, A. Grytsiv, G. Rogl, P. Heinrich, H. Mller, E. Bauer, M. Zehetbauer, P. Rogl, Acta Mater. 135, 263 (2017)

    Article  ADS  Google Scholar 

  19. K. Ciesielski, K. Synoradzki, I. Wolanska, P. Stachowiak, L. Kepinski, A. Jezowski, T. Tolinski, D. Kaczorowski, J. Alloys Compd. 816, 152596 (2020)

    Article  Google Scholar 

  20. M.J. Winiarski, K. Bilinska, K. Ciesielski, D. Kaczorowski, J. Alloys Compd. 762, 901–905 (2018)

    Article  Google Scholar 

  21. Y. Pan, A.M. Nikitin, T.V. Bay, Y.K. Huang, C. Paulsen, B.H. Yan, A. de Visser, Euro. Phys. Lett. 104, 27001 (2013)

    Article  ADS  Google Scholar 

  22. J. Chen, H. Li, B. Ding, Z. Hou, E. Liu, X. Xi, W. Guangheng, W. Wang, Appl. Phys. Lett. 116, 101902 (2020)

    Article  ADS  Google Scholar 

  23. Enamullah, S. C. Lee, J. Alloys Compd. (2018), Doi: https://doi.org/10.1016/j.jallcom.2018.01.330

  24. K. Gofryk, D. Kaczorowski, T. Plackowski, Phys. Rev. B 72, 094409 (2005)

    Article  ADS  Google Scholar 

  25. M. Lee, P. Poudeu, S.D. Mahanti, Phys. Rev. B 83, 085204 (2011)

    Article  ADS  Google Scholar 

  26. G. Ding, G.Y. Gao, L. Yu, Y. Ni, K. Yao, J. App. Phys. 119, 025105 (2016)

    Article  ADS  Google Scholar 

  27. T. Harmening, H. Eckert, R. Pottgen, Solid State Sci. 11, 900 (2009)

    Article  ADS  Google Scholar 

  28. Y. Han, Z. Chen, M. Kuang, Z. Liu, X. Wang, X. Wang, Results Phys. 12, 435–446 (2019)

    Article  ADS  Google Scholar 

  29. Enamullah, S. K. Sharma, K. Ansari, Physica B, 2020, 588, 412172

  30. H. Joshi, D.P. Rai, R.K. Thapa, AIP Conf. Proc. 1942, 11056 (2018)

    Google Scholar 

  31. A. Dey, R. Sharma, S.A. Dar, Mat. Today Commun. 25, 101647 (2020)

    Article  Google Scholar 

  32. A. Dey, R. Sharma, S.A. Dar, I.H. Wani, Comput Condens. Matt. 26, e00532 (2021)

    Article  Google Scholar 

  33. S. Parsamehr, A. Boochani, E. Sartipi, M. Amiri, S. Solaymani, S. Naderi, A. Aminian, Arch. Metall. Mater. 65(1), 459 (2020)

    Google Scholar 

  34. M. Sadeghi, A. Zelati, A. Boochani, A. Arman, S. Mirzaei, Mater. Res. Express 8, 046302 (2021)

    Article  ADS  Google Scholar 

  35. S. Parsamehr, A. Boochani, M. Amiri, S. Solaymani, E. Sartipi, S. Naderi, A. Aminian, Phil. Mag. 101, 369–386 (2021)

    Article  ADS  Google Scholar 

  36. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, Wien2K, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz (Techn. Universität Wien, Wien, Austria, 2001)

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  38. T. Tran, P. Blaha, Phy. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  39. C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)

    Article  ADS  Google Scholar 

  40. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  41. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  42. J. Oestreich, U. Probst, F. Richardt, E. Bucher, J. Phys. Condens. Matter. 15, 635 (2003)

    Article  ADS  Google Scholar 

  43. H. Kara, M.K. Upadhyay, K. Ozdogan, J. Alloys Compd. 735, 950 (2018)

    Article  Google Scholar 

  44. D. Shrivastava, S.P. Sanyal, J. Alloys Compd. 784, 319 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author JAA and MK is thankful to Commandant, National Defence Academy for all the support provided for the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramesh Sharma or Sajad Ahmad.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: …].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, J.A., Sharma, R., Ahmad, S. et al. DFT investigation on the electronic, optical and thermoelectric properties of novel half-Heusler compounds ScAuX (X = Si, Ge, Sn, Pb) for energy harvesting technologies. Eur. Phys. J. Plus 136, 1091 (2021). https://doi.org/10.1140/epjp/s13360-021-02021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02021-7

Navigation