Skip to main content
Log in

Flow features of a new fluidic oscillator using time-resolved PIV measurement and 3D numerical simulation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The current study measures the instantaneous velocity field inside and outside a new designed fluidic oscillator using planar time-resolved PIV technique on its symmetry plane in a water tank. The instantaneous velocity field showed that the interaction of four vortices with the jet was the main reason of jet oscillation inside the main chamber. Three-dimensional transient numerical solutions were also carried out using Ansys-Fluent 2020R2 software. Four turbulence models (k-ε, k-ε RNG, k-ω, and k-ω SST) were used for these numerical solutions, which their results were then compared with the PIV results, qualitatively and quantitatively. The comparison showed that the k-ε and k-ω SST models were better for simulating the flow of the new oscillator. However, both models over-predicted the jet spreading angle and oscillation frequency compared to the PIV results. A similar PIV measurement was accomplished outside the conventional oscillator to compare the time-averaged velocity fields of the new and conventional oscillators. The comparison showed that the amplitude and frequency of the new oscillator were, respectively, lower and higher than those of the conventional one. The time-averaged velocity and momentum flux outside the new oscillator was significantly higher than for the conventional one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

Abbreviations

A :

Throat area (m2)

D :

Throat height (m)

D h :

Hydraulic diameter (m)

Fr :

Oscillation frequency (1/s)

f :

Oscillation frequency (1/s)

H :

Domain height outside the oscillator (m) rate

k :

Turbulence kinetic energy (m2/s2)

M :

Momentum flux (kg.m/s2)

P :

Pressure (Pa)

Q :

Volumetric flow rate (m3/s), Q-criterion (1/s2)

Re:

Reynolds number

S :

Strain rate (1/s2)

St:

Strouhal number

t :

Time (s)

u :

Velocity (m/s)

U j :

Jet velocity at the throat (m/s)

w :

Throat width, oscillator width (m)

x :

X-coordinate, axial distance

y :

Y-coordinate

z :

Z-coordinate

δ ij :

Kronecker delta function

ε :

Turbulence kinetic energy dissipation rate

μ :

Dynamic viscosity (kg/m-s)

μ t :

Turbulent viscosity

ρ :

Fluid density (kg/m3)

υ :

Kinematic viscosity (m2/s)

ω:

Vorticity (1/s)

Γ:

Circulation (m2/s)

1:

Related to the primary chamber

2:

Related to the secondary chamber

References

  1. V. Tesař, High-frequency fluidic oscillator. Sens. Actuat. A Phys. 234, 158–167 (2015). https://doi.org/10.1016/j.sna.2015.08.019

    Article  Google Scholar 

  2. M. A. Hossain, R. Prenter, L. M. Agricola, R. K. Lundgreen, A. Ameri, J. W. Gregory, J. P. Bons, Effects of Roughness on the Performance of Fluidic Oscillators, 55th AIAA Aerospace Sciences Meeting. (Grapevine, Texas, 2017)

  3. S. Raghu, Fluidic oscillators for flow control. Exp. Fluids 54, 1455 (2013)

    Article  Google Scholar 

  4. R.W. Warren, Negative feedback oscillator, US Patent. 3158,166, filed 7th Aug. (1962)

  5. M. A. Hossain, R. Prenter, R. K. Lundgreen, L. M. Agricola, Investigation of Crossflow Interaction of an Oscillating Jet, 55th AIAA Aerospace Sciences Meeting, (Grapevine, Texas, 2017)

  6. M.A. Hossain, R. Prenter, R.K. Lundgreen, A. Ameri, J.W. Gregory, J.P. Bons, Experimental and numerical investigation of sweeping jet film cooling. J. Turbomach. 140, 1–13 (2018). https://doi.org/10.1115/1.4038690

    Article  Google Scholar 

  7. S.H. Kim, H.D. Kim, K.C. Kim, Measurement of two-dimensional heat transfer and flow characteristics of an impinging sweeping jet. Int. J. Heat Mass Transf. 136, 415–426 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.021

    Article  Google Scholar 

  8. M. Y. Andino, J. C. Lin, A. E. Washburn, E. A.Whalen, E. C. Graff, I. J. Wygnanski, Flow separation control on a full-scale vertical tail model using sweeping jet actuators. 53rd AIAA Aerospace Sciences Meeting, January. (2015). https://doi.org/10.2514/6.2015-0785.

  9. Q. Meng, S. Chen, W. Li, S. Wang, Numerical investigation of a sweeping jet actuator for active flow control in a compressor cascade, Proc. ASME Turbo Expo. 2A-2018 (2018). https://doi.org/10.1115/GT201876052.

  10. K. Kara, Flow separation control using sweeping jet actuator, 35th AIAA Appl. Aerodyn. Conf. 2017, 1–10 (2017). https://doi.org/10.2514/6.2017-3041

    Article  Google Scholar 

  11. H. Madadkon, A. Fadaie, M. Nili-Ahmadabadi, Experimental and numerical investigation of unsteady turbulent flow in a fluidic oscillator flow meter with extraction of characteristics diagrams. Mod. J. Mech. Eng. 12(5), 30–42 (2012)

    Google Scholar 

  12. M. Alikhassi, M. Nili-Ahmadabadi, R. Tikani, M.H. Karimi, A novel approach for energy harvesting from feedback fluidic oscillator. Int. J. Precis. Eng. Manuf. - Green Technol. 6, 769–778 (2019). https://doi.org/10.1007/s40684-019-00128-y.

  13. J.H. Seo, R. Mittal, Computational modeling and analysis of sweeping jet fluidic oscillators, 47th AIAA Fluid Dynamics Conference 2017, 1–12 (2017). https://doi.org/10.2514/6.2017-3312

  14. T. Chekifi, B. Dennai, R. Khelfaoui, Effect of geometrical parameters on vortex fluidic oscillators operating with gases and liquids. Fluid Dyn. Mater. Process. 14, 201–212 (2018). https://doi.org/10.3970/fdmp.2018.00322

    Article  Google Scholar 

  15. H.S. Jeong, K.Y. Kim, Shape optimization of a feedback-channel fluidic oscillator. Eng. Appl. Comput. Fluid Mech. 12, 169–181 (2018). https://doi.org/10.1080/19942060.2017.1379441

    Article  Google Scholar 

  16. B.C. Bobusch, R. Woszidlo, J.M. Bergada, C.N. Nayeri, C.O. Paschereit, Experimental study of the internal flow structures inside a fluidic oscillator. Exp. Fluids. 54 (2013). Doi: https://doi.org/10.1007/s00348-013-1559-6.

  17. B.C. Bobusch, R. Woszidlo, O. Krüger, C.O. Paschereit, Numerical investigations on geometric parameters affecting the oscillation properties of a fluidic oscillator, 21st AIAA Comput. Fluid Dyn. Conf., pp. 1–15 (2013). Doi: https://doi.org/10.2514/6.2013-2709

  18. F. Ostermann, R. Woszidlo, C.N. Nayeri, C.O. Paschereit, Experimental comparison between the flow field of two common fluidic oscillator designs, 53rd AIAA Aerosp. Sci. Meet., pp. 1–14 (2015). Doi: https://doi.org/10.2514/6.2015-0781

  19. S.H. Kim, H.D. Kim, Quantitative visualization of the three-dimensional flow structures of a sweeping jet. J. Vis. (2019). https://doi.org/10.1007/s12650-018-00546-1

    Article  Google Scholar 

  20. S. Mohammadshahi, H. Samsam-khayani, O. Nematollahi, K.C. Kim, Flow characteristics of a wall-attaching oscillating jet over single-wall and double-wall geometries. Exp. Therm. Fluid Sci. 112, 110009 (2020). https://doi.org/10.1016/j.expthermflusci.2019.110009

    Article  Google Scholar 

  21. R. Woszidlo, F. Ostermann, C.N. Nayeri, C.O. Paschereit, The time-resolved natural flow field of a fluidic oscillator. Exp. Fluids. 56, 1–12 (2015). https://doi.org/10.1007/s00348-015-1993-8

    Article  Google Scholar 

  22. J.W. Gregory, J.C. Ruotolo, A.R. Byerley, T.E. McLaughlin, Switching behavior of a plasma-fluidic actuator, Collect. Tech. Pap. - 45th AIAA Aerosp. Sci. Meet. 14, 9619–9629 (2007). Doi: https://doi.org/10.2514/6.2007-785.

  23. M. Nili Ahmadabadi, D. S. Cho, K. C. Kim, Design of a Novel Vortex-Based Feedback Fluidic Oscillator with Numerical Evaluation, Eng. App. of Comp. Fluid Mech. 14, 1302–1324 (2020). Doi: https://doi.org/10.1080/19942060.2020.1826360.

  24. [24] X. Y. Gao, Y. J. Guo, W. R. Shan, Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system, Chaos, Solitons and Fractals. 138, 109950 (2020). https:doi.org/https://doi.org/10.1016/j.chaos.2020.109950.

  25. X.Y. Gao, Y.J. Guo, W.R. Shan, Water-wave symbolic computation for the earth, enceladus and titan: the higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations. Appl. Math. Lett. 104, 106170 (2020). https://doi.org/10.1016/j.aml.2019.106170

    Article  MathSciNet  MATH  Google Scholar 

  26. X. XiaDu, B. Tian, Q.X. Qu, Y.Q. Yuan, X.H. Zhao, Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ionmagnetoplasma. Chaos Solitons Fractals 134, 109709 (2020). https://doi.org/10.1016/j.aml.2019.106170

    Article  MathSciNet  Google Scholar 

  27. S. S. Chen, B. Tian, J. Chai, X. Y. Wu, Z. Du, Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber Communication. 30(3), 389–402 (2020). Doi: https://doi.org/10.1080/17455030.2018.1516053.

  28. X. Y. Gao, Y. J. Guo, W. R. Shan, Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics, Physics Letters A. 384(202), 126788 (2020). Doi: https://doi.org/10.1016/j.physleta.2020.126788.

  29. X. Y. Gao, Y. J. Guo, W. R. Shan, Viewing the Solar System via a variable-coefficient nonlinear dispersive-wave system, Acta Mechanica. 231(202), 4415–4420 (2020).

  30. J. Boussinesq, Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Académie des Sciences 23(1), 1–680 (1987)

    MATH  Google Scholar 

  31. F.G. Schmitt, About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique 335(9–10), 617–627 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019H1D3A2A01061428). This work was also supported by the National Research Foundation of Korea (NRF) grant, which is funded by the Korean government (MSIT) (No. 2011-0030013, No. 2020R1A5A8018822).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahdi Nili-Ahmadabadi or Kyung Chun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nili-Ahmadabadi, M., Samsam-khayani, H., Mohammadshahi, S. et al. Flow features of a new fluidic oscillator using time-resolved PIV measurement and 3D numerical simulation. Eur. Phys. J. Plus 136, 953 (2021). https://doi.org/10.1140/epjp/s13360-021-01947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01947-2

Navigation