Skip to main content
Log in

Configurational entropy in Chaplygin gas models

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present work employs the Linder parametrization of a constant growth index (Linder in PRD 72:043529, 2005) to investigate the evolution of growth rate of clustering and the dissipation of configurational entropy in some of the most widely studied Chaplygin gas models, such as the generalized Chaplygin gas and the modified Chaplygin gas. The model parameters of the Chaplygin gas models are found to play a vital role in the evolution of growth rate, dark energy density parameter, EoS parameter, and configurational entropy. Furthermore, the work communicates the rate of change of configurational entropy to attain a minimum which depend solely on the choice of model parameters and that there exists suitable parameter combinations giving rise to a viable dissipation of configurational entropy, and therefore certifying its time derivative to hit a minimum at a scale factor which complies with the current observational constraints on the redshift of transition from a dust to an accelerated Universe and thereby making Chaplygin gas models a viable candidate for dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C.W. Misner, K. Thorne, J. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973)

    Google Scholar 

  2. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rept. 513, 1 (2012)

    Article  ADS  Google Scholar 

  3. L. Baudis, J. Phys. G 43, 044001 (2016)

    Article  ADS  Google Scholar 

  4. G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005)

    Article  ADS  Google Scholar 

  5. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209

  6. Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13

  7. K. C. Wong et al., H0LiCOW XIII. arXiv:1907.04869

  8. W. L. Freedman et al., arXiv: 1907.05922

  9. L. Verde et al., Nature Astron 3, 891 (2019)

    Article  ADS  Google Scholar 

  10. P. Bull et al., Physics. Dark Universe 12, 56 (2016)

  11. S. Chaplygin, Sci. Mem. Moscow Univ. Math. Phys. 21, 1 (1904)

    Google Scholar 

  12. N. Billic, G.B. Tupper, R.D. Viollier, Phys. Lett. B 535, 17 (2001)

    Article  ADS  Google Scholar 

  13. M.C. Bento, O. Berrolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  14. U. Debnath., A. Banerjee, S. Chakraborty, Class. Quant. Grav. 21 5609 (2004)

  15. D.-J. Liu, X.-Z. Li, Chin., Phys. Lett. 22, 1600 (2005)

  16. P. Thakur, S. Ghose, B.C. Paul, Mon. Not. R. Astron. Soc. 397, 1935 (2009)

    Article  ADS  Google Scholar 

  17. O. Bertolami, P.T. Silva, Mon. Not. R. Astron. Soc. 365, 1149 (2006)

    Article  ADS  Google Scholar 

  18. P.T. Silva, O. Bertolami, Astron. Astrophys. 599, 829 (2003)

    Google Scholar 

  19. A. Dev, D. Jain, J.S. Alcaniz, Astron. Astrophys. 417, 847 (2004)

    Article  ADS  Google Scholar 

  20. B. Pandey, MNRAS 471, L77 (2017)

    Article  ADS  Google Scholar 

  21. B. Das, B. Pandey, MNRAS 482(3), 3219 (2018)

    Article  ADS  Google Scholar 

  22. C.E. Shannon, Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  Google Scholar 

  23. S. Bhattacharjee, EPJP 135, 760 (2020). arXiv:2009.07458

  24. L. Perenon, J. Bel, R. Maartens, A. de la Cruz-Dombriz, JCAP. 06, 020 (2019)

    Article  ADS  Google Scholar 

  25. Q.-Guo Huang, Eur. Phys. J. C 74, 2964 (2014)

  26. S. Basilakos, Phys. Rev. D 93, 083007 (2016)

  27. S. Bhattacharjee, Chin. J. Phys., 68, 633-640 (2020). arXiv:2004.06884

  28. O. Farooq et al., ApJ 835, 1 (2017)

    Article  Google Scholar 

  29. S. Bhattacharjee, arXiv:2011.13135

  30. L. Wang, P.J. Steinhardt, Astrophys. J. 508, 483 (1998)

    Article  ADS  Google Scholar 

  31. E.V. Linder, PRD 72, 043529 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank an anonymous reviewer for the helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasish Bhattacharjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, S. Configurational entropy in Chaplygin gas models. Eur. Phys. J. Plus 136, 883 (2021). https://doi.org/10.1140/epjp/s13360-021-01891-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01891-1

Navigation