Skip to main content
Log in

Preheating and reheating constraints in supersymmetric braneworld inflation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

This article has been updated

Abstract

We study the evolution of the Universe at early stages; we discuss also preheating in the framework of hybrid braneworld inflation by setting conditions on the coupling constants \(\lambda \) and g for effective production of \(\chi \)-particles. Considering the phase between the time observable CMB scales crossed the horizon and the present time, we write reheating and preheating parameters \(N_{re}\), \(T_{re}\) and \(N_{pre}\) in terms of the scalar spectral index \(n_{s}\) and prove that, unlike the reheating case, the preheating duration does not depend on the values of the equation of state \(\omega ^{*}\). We apply the slow-roll approximation in the high energy limit to constrain the parameters of D-term hybrid potential. We show also that some inflationary parameters, in particular, the spectral index \(n_{s}\) demand that the potential parameter \(\alpha \) is bounded as \(\alpha \ge 1\) to be consistent with Planck’s data, while the ratio r is in agreement with observation for \( \alpha \le 1 \) considering high inflationary e-folds. We also propose an investigation of the brane tension effect on the reheating temperature. Comparing our results to recent CMB measurements, we study preheating and reheating parameters \(N_{re}\), \(T_{re}\) and \(N_{pre}\) in the Hybrid D-term inflation model in the range \(0.8\le \alpha \le 1.1\)  and conclude that \(T_{re}\) and \(N_{re}\) require \(\alpha \le 1\), while for \(N_{pre}\) the condition \(\alpha \le 0.9\) must be satisfied, to be compatible with Planck’s results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 11 September 2021

    In the original version of this article, the given and family names of Khalil El Bourakadi were incorrectly structured. This has been corrected.

References

  1. A. Lukas et al., Universe as a domain wall. Phys. Rev. D 59(8), 086001 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Kofman, Preheating after inflation. In: COSMO-97, pp. 312-321 (1998)

  3. L. Kofman, A. Linde, A.A. Starobinsky, Towards the theory of reheating after inflation. Phys. Rev. D 56(6), 3258 (1997)

    Article  ADS  Google Scholar 

  4. K. Asadi, K. Nozari, Reheating constraints on a two-field inflationary model. Nucl. Phys. B 949, 114827 (2019)

    Article  MathSciNet  Google Scholar 

  5. A. Safsafi, A. Bouaouda, R. Zarrouki, H. Chakir, M. Bennai, Supersymmetric braneworld inflation in light of WMAP7 observations. Int. J. Theor. Phys. 51(6), 1774–1782 (2012)

    Article  Google Scholar 

  6. G. Lazarides, Supersymmetry and inflation. Nucl. Phys. B-Proceed. Suppl. 52(1–2), 242–245 (1997)

    Article  ADS  Google Scholar 

  7. E. Halyo, Hybrid inflation from supergravity D-terms. Phys. Lett. B 387(1), 43–47 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Rocher, M. Sakellariadou, D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements. Phys. Rev. Lett. 94(1), 011303 (2005)

    Article  ADS  Google Scholar 

  9. J. Rocher, M. Sakellariadou, Constraints on supersymmetric grand unified theories from cosmology. J. Cosmol. Astropart. Phys. 03, 004 (2005)

    Article  ADS  Google Scholar 

  10. A. Safsafi, M. Ferricha-Alami, H. Chakir, J. Inchaouh, M. Bennai, D-term chaotic Braneworld in supergravity constrained by WMAP9 data. Commun. Theor. Phys. 61(3), 397 (2014)

    Article  ADS  Google Scholar 

  11. R. Allahverdi, R. Brandenberger, F.Y. Cyr-Racine, A. Mazumdar, Reheating in inflationary cosmology: theory and applications. Annu. Rev. Nucl. Part. Sci. 60, 27–51 (2010)

    Article  ADS  Google Scholar 

  12. L. Kofman, A. Linde, A.A. Starobinsky, Nonthermal phase transitions after inflation. Phys. Rev. Lett. 76(7), 1011 (1996)

    Article  ADS  Google Scholar 

  13. L. Dai, M. Kamionkowski, J. Wang, Reheating constraints to inflationary models. Phys. Rev. Lett. 113(4), 041302 (2014)

    Article  ADS  Google Scholar 

  14. J.L. Cook, E. Dimastrogiovanni, D.A. Easson, L.M. Krauss, Reheating predictions in single field inflation. J. Cosmol. Astropart. Phys. 04, 047 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, et al. (2020). Planck 2018 results. VI. Cosmological parameters

  16. D.H. Lyth, A. Riotto, Comments on D-term inflation. Phys. Lett. B 412(1–2), 28–34 (1997)

    Article  ADS  Google Scholar 

  17. L. Randall, R. Sundrum(1999) Large mass hierarchy from a small extra dimension. Phys. Rev. Lett., 83(17), 3370. Randall, L., & Sundrum, R. (1999), An alternative to compactification , Phys. Rev. Lett., 83.23: 4690

  18. M. Ferricha-Alami, Z. Sakhi, H. Chakir, M. Bennai, Mutated hybrid inflation on brane and reheating temperature. Eur. Phys. J. Plus 132(7), 1–10 (2017)

    Article  Google Scholar 

  19. R. Maartens, D. Wands, B.A. Bassett, I.P. Heard, Chaotic inflation on the brane. Phys. Rev. D 62(4), 041301 (2000)

    Article  ADS  Google Scholar 

  20. G. Felder, J. Garcia-Bellido, P.B. Greene, L. Kofman, A. Linde, I. Tkachev, Dynamics of symmetry breaking and tachyonic preheating. Phys. Rev. Lett. 87(1), 011601 (2001)

    Article  ADS  Google Scholar 

  21. A. Linde, Axions in inflationary cosmology. Phys. Lett. B 259(1–2), 38–47 (1991)

    Article  ADS  Google Scholar 

  22. J. Garcia-Bellido, A. Linde, D. Wands, Density perturbations and black hole formation in hybrid inflation. Phys. Rev. D 54(10), 6040 (1996)

    Article  ADS  Google Scholar 

  23. S. Hannestad, What is the lowest possible reheating temperature? Phys. Rev. D 70(4), 043506 (2004)

    Article  ADS  Google Scholar 

  24. J. Garcia-Bellido, A. Linde, Preheating in hybrid inflation. Phys. Rev. D 57(10), 6075 (1998)

    Article  ADS  Google Scholar 

  25. C. Osses, N. Videla, G. Panotopoulos, Reheating in small-field inflation on the brane: the swampland criteria and observational constraints in light of the PLANCK 2018 results The. Eur. Phys. J. C 81(6), 1–29 (2021)

    Article  Google Scholar 

  26. R.G. Cai, Z.K. Guo, S.J. Wang, Reheating phase diagram for single-field slow-roll inflationary models. Phys. Rev. D 92(6), 063506 (2015)

    Article  ADS  Google Scholar 

  27. Z. Sakhi, K. El Bourakadi, A. Safsafi, M. Ferricha-Alami, H. Chakir, M. Bennai, Effect of brane tension on reheating parameters in small field inflation according to Planck-2018 data. Int. J. Mod. Phys. A 35(30), 2050191 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Z. Sakhi, A. Safsafi, M. Ferricha-Alami, H. Chakir, M. Bennai, Observational constraints on reheating in braneworld inflation. Int. J. Mod. Phys. A 34(27), 1950152 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Bouaouda, R. Zarrouki, H. Chakir, M. Bennai, F-term braneworld inflation in light of five-year WMAP observations. Int. J. Mod. Phys. A 25(17), 3445–3451 (2010)

    Article  ADS  Google Scholar 

  30. P. Binetruy, G. Dvali, R. Kallosh, A. Van Proeyen, Fayet-Iliopoulos terms in supergravity and cosmology. Class. Quantum Gravity 21(13), 3137 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Panotopoulos, D-term inflation in D-brane cosmology. Phys. Lett. B 623(3–4), 185–191 (2005)

    Article  ADS  Google Scholar 

  32. R. Maartens, Living rev. Relativity 7, 7 (2004)

    Article  Google Scholar 

  33. A. Safsafi, A. Bouaouda, H. Chakir, J. Inchaouh, M. Bennai, Observational constraints on D-Term Braneworld inflation. Mod Phys. Lett. A 27(36), 1250205 (2012)

    Article  ADS  Google Scholar 

  34. D.H. Lyth, A. Riotto, Particle physics models of inflation and the cosmological density perturbation. Phys. Rep. 314(1–2), 1–146 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  35. D. Langlois, R. Maartens, D. Wands, Gravitational waves from inflation on the brane. Phys. Lett. B 489(3–4), 259–267 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Podolsky, G.N. Felder, L. Kofman, M. Peloso, Equation of state and beginning of thermalization after preheating. Phys. Rev. D 73(2), 023501 (2006)

    Article  ADS  Google Scholar 

  37. M.Y. Khlopov, A.D. Linde, Is it easy to save the gravitino? Phys. Lett. B 138(4), 265–268 (1984)

    Article  ADS  Google Scholar 

  38. N. Okada, O. Seto, Thermal leptogenesis in brane world cosmology. Phys. Rev. D 73(6), 063505 (2006)

    Article  ADS  Google Scholar 

  39. M. Kawasaki, T. Moroi, Gravitino production in the inflationary universe and the effects on big-bang nucleosynthesis. Prog. Theor. Phys. 93(5), 879–899 (1995)

    Article  ADS  Google Scholar 

  40. N. Okada, O. Seto, Brane world cosmological solution to the gravitino problem. Phys. Rev. D 71(2), 023517 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. El Bourakadi.

Additional information

Preheating and Reheating Constraints in Supersymmetric Braneworld Inflation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Bourakadi, K., Bousder, M., Sakhi, Z. et al. Preheating and reheating constraints in supersymmetric braneworld inflation. Eur. Phys. J. Plus 136, 888 (2021). https://doi.org/10.1140/epjp/s13360-021-01887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01887-x

Navigation