Skip to main content
Log in

Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A numerical study is presented of laminar viscous magnetohydrodynamic natural convection flow in a triangular-shaped porous enclosure filled with electrically conducting air and containing two hot obstacles. The mathematical model is formulated in terms of dimensional partial differential equations. The pressure gradient term is eliminated by using the vorticity–stream (\(\omega - \psi\)) function approach. The emerging dimensionless governing equations are employed by the regular finite difference scheme along with thermofluidic boundary conditions. The efficiency of the obtained computed results for isotherms and streamlines is validated via comparison with previously published work. The impact of physical parameters on streamlines and temperature contours for an extensive range of Rayleigh number (Ra = 103–105), Hartmann magnetohydrodynamic number (Ha = 5–30), Darcy parameter (Da = 0.0001–0.1) for fixed Prandtl number (Pr = 0.71) is considered. Numerical results are also presented for local and average Nusselt numbers along the hot base wall. Interesting features of the thermofluid behaviour are revealed. At lower Rayleigh number, the isotherms are generally parallel to the inclined wall and only distorted substantially near the obstacles at the left vertical adiabatic wall; however, with increasing Rayleigh number, this distortion is magnified in the core zone and simultaneously warmer zones expand towards the inclined cold wall. The simulations are relevant to magnetic materials processing and hybrid magnetic fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

x :

Coordinate parallel to base of enclosure (m)

y :

Coordinate perpendicular to base of enclosure (m)

g :

Acceleration due to gravity (m/s2)

L :

Length of base and vertical walls of triangular enclosure (m)

u :

X-direction velocity (m/s)

y :

Y-direction velocity (m/s)

B o :

Magnitude of applied magnetic field (Tesla)

K :

Permeability of the porous medium (m2)

p :

Hydrodynamic pressure (Pa)

K :

Effective thermal conductivity of fluid-saturated porous medium (W/mK)

t :

Time (s)

T :

Temperature (K)

C p :

Isobaric specific heat (J/kgK)

σ :

Electrical conductivity of fluid (Siemens/m)

β :

Thermal expansion coefficient of fluid (/K)

μ :

Dynamic viscosity of fluid (kg/ms)

ν :

Kinematic viscosity of fluid (m2/s)

ρ :

Fluid density at reference temperature (kg/m3)

α :

Thermal diffusivity of fluid-saturated porous medium (m2/s)

q :

Heat flux (W/m2)

τ :

Dimensionless time

Ha :

Hartmann hydromagnetic number

Da:

Darcy number

Pr:

Prandtl number

Nu:

Nusselt number

Ra:

Rayleigh number

X :

Dimensionless x coordinate

Y :

Dimensionless y coordinate

U :

Dimensionless u velocity

V :

Dimensionless v velocity

θ :

Dimensionless temperature

ψ:

Stream function

ω :

Vorticity function

()h :

Hot wall (base)

()c :

Cold wall (inclined)

References

  1. W. Liu, A. Shahsavar, A.A. Barzinjy, A.A. Al-Rashed, M. Afrand, Int. Commun. Heat Mass Transf. 108, 104309 (2019)

    Article  Google Scholar 

  2. D. Das, L. Lukose, T. Basak, Int. J. Heat Mass Transf. 127, 1290–1312 (2018)

    Article  Google Scholar 

  3. O. Mahian, A. Kianifar, S.Z. Heris, S. Wongwises, J. Heat Mass Transf. 99, 792–804 (2016)

    Article  Google Scholar 

  4. F.A. Soomro, R.U. Haq, E.A. Algehyne, I. Tlili, J. Energy Storage 31, 101702 (2020)

    Article  Google Scholar 

  5. M. Izadi, Chin. J. Chem. Eng. 28, 1203–1213 (2020)

    Article  Google Scholar 

  6. F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 45(5), 2150–2162 (2014)

    Article  Google Scholar 

  7. E.F. Kent, E. Asmaz, S. Ozerbay, Heat Mass Transf. 44(2), 187–200 (2007)

    Article  ADS  Google Scholar 

  8. S.E. Ahmed, M.A. Mansour, A.M. Rashad, T. Salah, J. Therm. Anal. Calorim. 139(5), 3133–3149 (2020)

    Article  Google Scholar 

  9. Y. Varol, Int. Commun. Heat Mass Transf. 38(3), 368–376 (2011)

    Article  Google Scholar 

  10. O. A Bég, S. Kuharat, A. Kadir, W. Jouri, Materials of the Future: Smart Applications in Science and Engineering, Qatar University, Doha, Qatar, March, p 29–31. (2021)

  11. M.H. Khan, K. Venkatadri, O. Anwar Bég, V.R. Prasad, B. Mallikarjuna, Int. J. Appl. Comput. Math. 4(61), 1–20 (2018)

    Google Scholar 

  12. O.A. Bég, K. Venkatadri, V.R. Prasad, T.A. Beg, A. Kadir, H.J. Leonard, Mater. Sci. Eng. B 261, 114722 (2020)

    Article  Google Scholar 

  13. O. Anwar Bég, K. Venkatadri, V. R. Prasad, T. A. Bég, H. J. Leonard, W. S. Jouri, Proc. IMechE-Part C–J. Mechanical Engineering Science (2020)

  14. S. Kuharat, O. Anwar Bég, A. Kadir, B. Vasu, Arabian J. Science and Engineering, p 19 (2020)

  15. D. Das, T. Basak, Int. J. Heat Mass Transf. 112, 489–508 (2017)

    Article  Google Scholar 

  16. M. Fayz-Al-Asad, M. Nur Alam, H. Ahmad, M. M. A. Sarker, M. D. Alsulami, K. A. Gepreel, Results in Physics (2021)

  17. Z. Li, A. Shahsavar, K. Niazi, A. A. A. Al-Rashed, P. Talebizadehsardari, Powder Technology (2019)

  18. G. Yesiloz, O. Aydin, Int. J. Heat Mass Transf. 60, 365–374 (2013)

    Article  Google Scholar 

  19. S.E. Ahmed, A.M. Rashad, R.S. Reddy Gorla, J. Thermophys. Heat Transf. 27(4), 700 (2013)

    Article  Google Scholar 

  20. R. Chowdhury, S. Parvin, M.A.H. Khan, Heliyon 2(8), e00140 (2016)

    Article  Google Scholar 

  21. M.M. Rahman et al., Int. Commun. Heat Mass Transf. 39, 78–84 (2012)

    Article  Google Scholar 

  22. C. Sivaraj, M.A. Sheremet, J. Magn. Magn. Mater. 426, 351–360 (2017)

    Article  ADS  Google Scholar 

  23. Hiroyuki, O., (Ed), Magnetic Convection, pp. 236, Imperial College Press (2005)

  24. C. Jiang et al., J. Supercond. Nov. Magn. 27, 519–525 (2014)

    Article  Google Scholar 

  25. C. Jiang et al., J. Magn. Magn. Mater. 357, 53–60 (2014)

    Article  ADS  Google Scholar 

  26. S. Bouabdallah, R. Bessaïh, Fluid Dyn. Mater. Process. 6(3), 251–276 (2010)

    Google Scholar 

  27. I. Mejri et al., Fluid Dyn. Mater. Process. 10(1), 83–114 (2014)

    Google Scholar 

  28. T. Basak, S. Roy, C. Thirumalesha, Chem. Eng. Sci. 62(9), 2623–2640 (2007)

    Article  Google Scholar 

  29. K. Venkatadri, O. Anwar Bég, P. Rajarajeswari, V. Ramachandra Prasad, Int. J. Mech. Sci. 171, 105391 (2020)

    Article  Google Scholar 

  30. K. Venkatadri, S. Gouse Mohiddin, R.M. Suryanarayana, Eng. Comput. 34(8), 2463–2478 (2017)

    Article  Google Scholar 

  31. K. Venkatadri, A. Shobha, C. Venkata Lakshmi, V. Ramachandra Prasad, B. Hidayathulla Khan, J. Appl. Comput. Mech. 51(2), 323–331 (2020)

    Google Scholar 

  32. T. Sarala Devi, C. Venkata Lakshmi, K. Venkatadri, V. Ramachandra Prasad, O. Anwar Bég, M. Suryanarayana Reddy, Heat Transf. 49(4), 1769–1787 (2020)

    Article  Google Scholar 

  33. K. Venkatadri, S. Abdul Gaffar, V. Ramachandra Prasad, B.M. Hidayathulla Khan, O. Anwar Beg, Int. J. Automot. Mech. Eng 16(4), 7375–7390 (2019)

    Article  Google Scholar 

  34. K. Venkatadri, S. Abdul Gaffar, M. Suryanarayana Reddy, V. Ramachandra Prasad, B.M. Hidayathulla Khan, O. Anwar Bég, J. Appl. Comput. Mech. 6(1), 52–62 (2020)

    Google Scholar 

  35. K. Venkatadri, O. Anwar Bég, P. Rajarajeswari, V. Ramachandra Prasad, A. Subbarao, B.M. Hidayathulla Khan, J. Porous Med. 23(12), 1187–1199 (2020)

    Article  Google Scholar 

  36. M. Afrand, A.H. Pordanjani, S. Aghakhani, H.F. Oztop, N. Abu-Hamdeh, Int. Commun. Heat Mass Transf. 112, 104507 (2020)

    Article  Google Scholar 

  37. K. Al-Farhany, M.A. Alomari, K.B. Saleem et al., Eur. Phys. J. Plus 136, 814 (2021)

    Article  Google Scholar 

  38. A. Doostali, M. Rezazadeh, Eur. Phys. J. Plus 133, 511 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Venkatadri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

chandanam, V., lakshmi, C.V., Venkatadri, K. et al. Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles. Eur. Phys. J. Plus 136, 885 (2021). https://doi.org/10.1140/epjp/s13360-021-01881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01881-3

Navigation