Skip to main content
Log in

Spoof surface plasmon polariton waveguide with spiral structure units

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

By introducing periodic structure such as grooves into metal surface, spoof surface plasmon polaritons (SSPPs) at microwave and terahertz bands with similar characteristics to optical SPPs can be transmitted along the metal/dielectric interface. In order to reduce the cutoff frequency of a planar SSPP waveguide, periodic elements of rectangular spiral structure are applied in this paper. This waveguide is excited by a microstrip feedline whose ground plane has an opening angle. The experimental results show that only a small periodic conductor width is required to achieve a low cutoff frequency suitable for sub-6 GHz applications. Meanwhile, the passband range can be adjusted by controlling the length of the spiral arm, while the waveguide width remains unchanged. However, a negative group velocity of the fundamental mode can be introduced by using longer spiral arms to enhance the field confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.L. Barnes, J. Opt. A: Pure Appl. Opt. 8(4), S87–S93 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Sci. 305(5685), 847–848 (2004)

    Article  ADS  Google Scholar 

  3. A.P. Hibbins, B.R. Evans, J.R. Sambles, Sci. 308, 670–672 (2005)

    Article  ADS  Google Scholar 

  4. L. Shen, X. Chen, T.J. Yang, Opt. Exp. 16(5), 3326–3333 (2008)

    Article  ADS  Google Scholar 

  5. T. Gric, M.S. Wartak, M. Cada, J.J. Wood, O. Hess, J. Pistora, J. Electromagn. Waves App. 29(14), 1899–1907 (2015)

    Article  Google Scholar 

  6. G. Kumar, S. Li, M.M. Jadidi, T.E. Murphy, New J. Phys. 15, 085031 (2013)

    Article  ADS  Google Scholar 

  7. T. Gric, J. Electromagn. Waves App. 30(6), 721–727 (2016)

    Article  Google Scholar 

  8. T. Ioannidis, T. Gric, E. Rafailov, Opt. Quantum electron. 52, 10 (2020)

    Article  Google Scholar 

  9. X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, T. Jiang, Opt. Exp. 22(17), 20107–20116 (2004)

    Article  ADS  Google Scholar 

  10. J.J. Xu, H.C. Zhang, Q. Zhagn, T.J Cui, Appl. Phys. Lett. 106(2), 021102 (2015)

  11. H.C. Zhagn, Y. Fan, J. Guo, X. Fu, T.J. Cui, ACS Photon. 3(1), 139–146 (2016)

    Article  ADS  Google Scholar 

  12. A.I. Femandez-Dominguez, E. Moreno, L. Martin-Moreno, F.J. Garcia-Vidal, Phys. Rev. B. 79(23), 233104 (2009)

    Article  ADS  Google Scholar 

  13. E. Moreno, S.G. Rodrigo, S.I. Bozhevolnyi, L. Martin-Moreno, F.J. Garcia-Vidal, Phys. Rev. Lett. 100(2), 023901 (2008)

    Article  ADS  Google Scholar 

  14. X. Shen, T.J. Cui, D. Martincano, F.J. Garciavidal, Proc. Nat. Acad. Sci. U. S. A. 110(1), 40–45 (2013)

    Article  ADS  Google Scholar 

  15. X. Shen, T.J. Cui, Appl. Phys. Lett. 102(21), 211909 (2013)

    Article  ADS  Google Scholar 

  16. X. Gao, L. Zhou, Z. Liao, H.F. Ma, T.J. Cui, Appl. Phys. Lett. 104, 191603 (2014)

    Article  ADS  Google Scholar 

  17. Y. Wu, M. Li, G. Yan, L. Deng, Y. Liu, Z. Ghassemlooy, AIP Adv. 6(10), 105110 (2016)

    Article  ADS  Google Scholar 

  18. J.J. Wu, D.J. Hou, K. Liu, L. Shen, C.A. Tsai, C.J. Wu, D. Tsai, T.-J. Yang, Opt. Exp. 22(22), 26777–26787 (2014)

    Article  ADS  Google Scholar 

  19. H.C. Zhang, T.J. Cui, Q. Zhang, Y. Fan, X. Fu, ACS Photon. 2(9), 1333–1340 (2015)

    Article  Google Scholar 

  20. B.C. Pan, J. Zhao, Z. Liao, H.C. Zhang, T.J. Cui, Sci. Rep. 6, 22702 (2016)

    Article  ADS  Google Scholar 

  21. L. Ye, W. Zhang, B.K. Oforiokai, W. Li, J. Zhuo, G. Cai, Q.H. Liu, J. Lightwave Technol. 36(20), 4988–4994 (2018)

    Article  ADS  Google Scholar 

  22. H.F. Ma, X. Shen, Q. Cheng, W.X. Jiang, T.J. Cui, Laser Photonics Rev. 8, 146 (2014)

    Article  ADS  Google Scholar 

  23. R.T. Yan, H.C. Zhang, P.H. He, Z.X. Wang, X. Zhang, X. Fu, T.J. Cui, I.E.E.E. Microw, Wireless Compon. Lett. 30(1), 23–26 (2020)

    Article  Google Scholar 

  24. H.C. Zhang, Q. Zhang, J.F. Liu, W. Tang, Y. Fan, T.J. Cui, Sci. Rep. 6, 23396 (2016)

    Article  ADS  Google Scholar 

  25. Y. Xu, C. Nerguizian, R.G. Bosisio, I.E.T. Microw, Antennas Propag. 5(8), 882–885 (2011)

    Google Scholar 

  26. A. Treizebre, M. Hofman, B. Bocquet, Prog. Electromagn. Res. M 14, 163–176 (2010)

    Article  Google Scholar 

  27. L. Li, L. Dong, P. Chen, K. Yang, Int. J. Microw. Wirel. Technol. 11, 774–781 (2019)

    Article  Google Scholar 

  28. J. Xu, Z. Li, L. Liu, C. Chen, B. Xu, P. Ning, C. Gu, Opt. Commun. 372, 155–159 (2016)

    Article  ADS  Google Scholar 

  29. H. Xiang, Y. Meng, Q. Zhang, F.F. Qin, J.J. Xiao, D. Han, W. Wen, Opt. Commun. 356, 59–63 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation of Fujian Province of China (No. 2019J01045) and National Natural Science Foundation of China (No. 62071403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Q., Xu, Y., Zhang, L. et al. Spoof surface plasmon polariton waveguide with spiral structure units. Eur. Phys. J. Plus 136, 874 (2021). https://doi.org/10.1140/epjp/s13360-021-01880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01880-4

Navigation