Skip to main content

Advertisement

Log in

Effect of melting heat transfer on electromagnetohydrodynamic non-newtonian nanofluid flow over a riga plate with chemical reaction and arrhenius activation energy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article deals with the electromagnetohydrodynamic Casson Nanofluid flow induced by a stretching Riga plate in a non-Darcian porous medium under the influence of internal energy change, Arrhenius activation energy, chemical reaction and Melting heat transfer. The flow motion is induced as a result of the introduced mechanism that capable of controlling or assisting a weakly hydromagnetic fluid flow process called the Riga plate. In most of the literature, the thermophysical properties of the fluid are assumed to be constant. However, this present study bridges this gap by assuming that viscosity, conductivity and diffusivity are all temperature dependent. Also, the exponential decaying Grinberg term is used as a resistive force in this investigation due to the electromagnetic properties of the Riga plate in the momentum conservation equation. The resulting coupled nonlinear ordinary differential equations are solved by optimal homotopy analysis method (OHAM) and validated with Galerkin weighted residual method (GWRM). Analyses reveal that the Casson fluid exhibits a solid characteristic when yield stress is more than the shear stress. The thermal profile raised with an increase in melting and Casson parameter. Also, also the chemical reaction parameter reduces the nanoparticle volume fraction. Moreover, this article includes some future recommendations. These results will assist the engineers in designing applications that require high heat and mass transfer rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

All the data generated and materials during this study are included in this research article. This manuscript has associated data in a data repository. [Authors’ comment: All data used in this manuscript can be obtained on request from the corresponding author.]

Abbreviations

\(u, v\) :

Velocity in x and y directions

\( D_{{B\infty }} \) :

Constant Brownian diffusion coefficient

\(\mu_{\infty }\) :

Constant viscosity

\(\varepsilon_{1} ,\varepsilon_{3} ,\varepsilon_{5}\) :

Positive constants

\(\rho_{\infty }\) :

Density of the base fluid

\(\epsilon_{2}\) :

Variable viscosity parameter

\(\beta\) :

Casson parameter

\(\epsilon_{4}\) :

Variable thermal conductivity parameter

\(k\left( T \right)\) :

Variable thermal conductivity

\(\epsilon_{6}\) :

Variable mass diffusivity parameter

\(\mu \left( T \right)\) :

Variable viscosity

\(T_{m} , T_{0}\) :

Solid surface temperature

\(D_{B} \left( C \right)\) :

Variable mass diffusivity

\(T_{\infty }\) :

Ambient temperature

\(D_{T}\) :

Thermophoretic diffusion coefficient

\(T\) :

Nanofluid temperature

\(c_{p}\) :

Specific heat at constant pressure

\(C_{w}\) :

Wall nanoparticle volume fraction

\(k_{\infty }\) :

Constant nanofluid thermal conductivity

\(C_{\infty }\) :

Ambient nanoparticle volume fraction

\(c_{s}\) :

Specific heat of the solid surface

\(a\) :

Positive constant

\(J_{0}\) :

Current density

\(M\) :

Magnetization in magnets

\(\nu_{\infty }\) :

Constant kinematic viscosity

\(s\) :

Width of magnets and electrodes

\(\lambda\) :

Latent heat of diffusion

\(\alpha_{\infty }\) :

Constant thermal diffusivity

\(E\) and \(Kr\) :

Chemical reaction and activation energy

\(C\) :

Nanoparticle volume fraction

\(\left( {k_{p} } \right)_{o}\) :

Permeability coefficient

Pr:

Prandtl number

Nb:

Brownian motion parameter

Nt:

Thermophoresis parameter

Sc:

Schimdt number

Me:

Melting parameter

Ec:

Eckert number

Z:

Modified Hartman number

B:

Dimensionless parameter

Pp:

Porosity parameter

\( \epsilon_{2}\) :

Variable viscosity parameter

\( \epsilon_{4}\) :

Variable thermal conductivity parameter

\( \epsilon_{6}\) :

Variable mass diffusivity parameter

\(\tau\) :

Ratio of nanoparticle heat capacity to the fluid heat capacity

References

  1. G. Mutschke, G. Gerbeth, T. Albrecht, R. Grundmann, Eur. J. Mech.-B/Fluids 25(2), 137–152 (2006). https://doi.org/10.1016/j.euromechflu.2005.05.002

    Article  ADS  MathSciNet  Google Scholar 

  2. A.M. Obalalu, F.A. Wahaab, L.L. Adebayo, J. Taibah Univ. Sci. 14(1), 541–548 (2020). https://doi.org/10.1080/16583655.2020.1748844

    Article  Google Scholar 

  3. R. Ellahi, S.Z. Alamri, A. Basit, A. Majeed, J. Taibah Univ. Sci. 12(4), 476–482 (2018). https://doi.org/10.1080/16583655.2018.1483795

    Article  Google Scholar 

  4. O. Lielausis, Appl. Magnetohydrodyn. 12, 143–146 (1961)

    Google Scholar 

  5. R. Kumar, S. Sood, S.A. Shehzad, M. Sheikholeslami, J. Mol. Liq. 248, 143–152 (2017). https://doi.org/10.1016/j.molliq.2017.10.018

    Article  Google Scholar 

  6. P. Loganathan, K. Deepa, A. Mechanics, J. Theor. 57 (2019) I https://doi.org/10.15632/jtam-pl/112421

  7. Z. Iqbal, E. Azhar, Z. Mehmood, E. Maraj, Results Phys. 7, 3648–3658 (2017). https://doi.org/10.1016/j.rinp.2017.09.047

    Article  ADS  Google Scholar 

  8. H. Vaidya, K. Prasad, I. Tlili, O. Makinde, C. Rajashekhar, S.U. Khan, R. Kumar, D. Mahendra, Case Studies Therm. Eng. 24, 100828 (2021). https://doi.org/10.1016/j.csite.2020.100828

    Article  Google Scholar 

  9. Yu, W. and H. Xie, J. Nanomater. 2012 (2012) https://doi.org/10.1155/2012/435873

  10. A.R. Sajadi, S.S. Sadati, M. Nourimotlagh, O. Pakbaz, D. Ashtiani, F. Kowsari, Therm. Sci. 18(4), 1315–1326 (2014). https://doi.org/10.2298/TSCI131114022S

    Article  Google Scholar 

  11. K. Rafique, H. Alotaibi, T.A. Nofal, M.I. Anwar, M. Misiran, I. Khan, J. Math. 2020 (2020) https://doi.org/10.1155/2020/6617652

  12. T. Zhang, Y. Zhang, H. Zhu, Z. Yan, Compos. Struct. 256, 112988 (2021). https://doi.org/10.1016/j.compstruct.2020.112988

    Article  Google Scholar 

  13. I.S. Oyelakin, S. Mondal, P. Sibanda, Alex. Eng. J. 55(2), 1025–1035 (2016). https://doi.org/10.1016/j.aej.2016.03.003

    Article  Google Scholar 

  14. A. Afsar Khan, R. Ellahi, K. Vafai, Adv. Math. Phys. 2012 (2012) https://doi.org/10.1155/2012/169642

  15. A. Ahmad, M. Ahmad, M. Nazar, Z.U. Nisa, N.A.J.M.S. Shah, Math. Sci. 1–13 (2021)

  16. S. Arrhenius, J. Zeitschrift für Physikalische Chemie 31 (1), 197–229 (1899) https://doi.org/10.1515/zpch-1899-3120

  17. W. Li, J. Huang, Z. Zhang, H. Huang, J. Liang, J. Appl. Polym. Sci. 138(1), 49615 (2021). https://doi.org/10.1002/app.49615

    Article  Google Scholar 

  18. A. Bestman, Int. J. Energy Res. 14(4), 389–396 (1990). https://doi.org/10.1002/er.4440140403

    Article  Google Scholar 

  19. M. Ayub, T. Abbas, M. Bhatti, Eur. Phys. J. Plus 131(6), 1–9 (2016). https://doi.org/10.1140/epjp/i2016-16193-4

    Article  Google Scholar 

  20. I.H. Qureshi, M. Nawaz, S. Rana, T. Zubair, Commun. Theor. Phys. 70(1), 049 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. M.M. Rahman, M. Rahman, M. Samad, M. Alam, Int. J. Thermophys. 30(5), 1649 (2009). https://doi.org/10.1007/s10765-009-0656-5

    Article  ADS  Google Scholar 

  22. I. Mustafa, Z. Abbas, A. Arif, T. Javed, A. Ghaffari, Physica A: Stat. Mech. Appl. 540, 123028 (2020). https://doi.org/10.1016/j.physa.2019.123028

    Article  Google Scholar 

  23. A.M. Obalalu, I. Kazeem, A. Abdulrazaq, O.A. Ajala, A. Oluwaseyi, A.T. Adeosun, L.L. Adebayo, F.A. Wahaab, J. Serb. Soc. Comput. Mech. 14 (2), 503–519 (2020) https://doi.org/10.24874/jsscm.2020.14.02.10

  24. R. Fazio, A. Jannelli, Math. Comput. Appl. (2021) https://doi.org/10.20944/preprints202102.0125.v1

  25. B.S. Goud, P.P. Kumar, B.S. Malga, Part. Differ. Equ. Appl. Math. 2, 100015 (2020). https://doi.org/10.1016/j.padiff.2020.100015Get

    Article  Google Scholar 

  26. A. Mahdy, A.J. Chamkha, H.A. Nabwey, Alex. Eng. J. 59(3), 1693–1703 (2020). https://doi.org/10.1016/j.aej.2020.04.028

    Article  Google Scholar 

  27. O. Ajala, P. Adegbite, S. Abimbade, A. Obalalu, Int. J. Appl. Math. Stat. Sci. (2019)

  28. O.A. Ajala, A.M. Obalalu, O.T. Akinyemi, S.F. Abimbade, Int. J. Sci. Res. Publ. 9 (6) (2019) https://doi.org/10.29322/IJSRP.9.06.2019.p9094

  29. M.H. Abolbashari, N. Freidoonimehr, F. Nazari, M.M. Rashidi, J Adv. Powd. Technol. 26(2), 542–552 (2015). https://doi.org/10.1016/j.apt.2015.01.003

    Article  Google Scholar 

  30. W. Khan, I. Pop, Int. J. Heat 53(11–12), 2477–2483 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032

    Article  Google Scholar 

  31. O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 50(7), 1326–1332 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.02.019

    Article  Google Scholar 

  32. A. Wakif, A. Chamkha, I. Animasaun, M. Zaydan, H. Waqas, R. Sehaqui, Arab. J. Sci. Eng. 45(11), 9423–9438 (2020). https://doi.org/10.1007/s13369-020-04757-3

    Article  Google Scholar 

Download references

Acknowledgements

The author appreciates the excellent research facilities provided by Kwara state university.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adebowale Martins Obalalu.

Ethics declarations

Conflict of interest

No declarations by the writer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obalalu, A.M., Ajala, O.A., Akindele, A.O. et al. Effect of melting heat transfer on electromagnetohydrodynamic non-newtonian nanofluid flow over a riga plate with chemical reaction and arrhenius activation energy. Eur. Phys. J. Plus 136, 891 (2021). https://doi.org/10.1140/epjp/s13360-021-01869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01869-z

Navigation