Skip to main content
Log in

Dynamics of bipartite quantum correlations and coherence in classical environments described by pure and mixed Gaussian noises

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We discuss the time evolution of entanglement, purity, and coherence of two non-interacting maximally entangled qubits in two different classical environmental configurations: bipartite and independent system–environment configuration. Gaussian noises, such as fractional Gaussian \((\mathcal {F_G})\) and power-law (\(\mathcal {P_L})\) noise, are considered characterizing these environments. In particular, we are interested in exploring the dephasing effects in two qubits caused by the Gaussian noises in pure and mixed situations using entanglement witness, concurrence, purity, and decoherence measures. We notice both the noises in pure and in mixed forms are highly dephasing, and the bipartite quantum correlation, purity, and coherence eventually disappear after a finite interaction time. We notice that the current quantum phenomena decay faster under \(\mathcal {F_G}\) noise than under \(\mathcal {P_L}\) noise. Also, in independent system–environment configuration, the bipartite state is found to have slightly longer quantum correlation, purity, and coherence preservation than common environments, suggesting it more favourable for such quantum operations. For increasing values of the memory parameter of the \(\mathcal {F_G}\) noise, the entanglement, purity, and coherence become initially robust, defying the dephasing character of parameters of nearly all the noises. The wide spectrum of the pure \(\mathcal {P_L}\) noise can be readily exploited to design long preservation effects, especially by fixing the noise parameters to utmost low values. Also, the decay outlook induced by both noises is a monotonous function of time, with no entanglement sudden death and births observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.H. Bennett, D.P. Di Vincenzo, Quantum information and computation. Nature 404(6775), 247–255 (2000)

    Article  ADS  MATH  Google Scholar 

  2. M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2002), pp. 558–559

    Google Scholar 

  3. P. Kok, B.W. Lovett, Introduction to Optical Quantum Information Processing (Cambridge University Press, Cambridge, 2013), pp. 1–488

    MATH  Google Scholar 

  4. J. Alicea, Y. Oreg, G. Refael, F. Von Oppen, M.P. Fisher, Nature Phys. 7(5), 412 (2011)

    Article  ADS  Google Scholar 

  5. L. Gyongyosi, S. Imre, H.V. Nguyen, IEEE Commun. Surv. Tutor. 20(2), 1149–1205 (2018)

    Article  Google Scholar 

  6. L. Xi-Han, L. Chun-Yan, D. Fu-Guo, Z. Ping, L. Yu-Jie, Z. Hong-Yu, Chin. Phys. 16(8), 2149 (2007)

    Article  Google Scholar 

  7. J. Stajic, Science 339(6124), 1163–1163 (2013)

    Article  ADS  Google Scholar 

  8. H. Chen, L.R. Varshney, P.K. Varshney, Proc. IEEE 102(10), 1607–1621 (2014)

    Article  Google Scholar 

  9. Z.J. Zhang, Y. Li, Z.X. Man, Phys. Rev. A 71(4), 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Trabesinger, Nat. Phys. 8(4), 263–263 (2012)

    Article  Google Scholar 

  11. M. Terraneo, B. Georgeot, D.L. Shepelyansky, Eur. Phys. J. D-Atomic Mol. Opt. Plasma Phys. 22(1), 127–130 (2003)

    Google Scholar 

  12. R. Das, A. Kumar, Phys. Rev. A 68(3), 032304 (2003)

    Article  ADS  Google Scholar 

  13. R. Eisberg, R. Resnick, J.D. Sullivan, Phys. Today 28(12), 51 (1975)

    Article  ADS  Google Scholar 

  14. M. Tegmark, J.A. Wheeler, Sci. Am. 284(2), 68–75 (2001)

    Article  Google Scholar 

  15. A. O. Caldeira, (Cambridge University Press, 2014)

  16. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, D. Bonneau, Science 360(6386), 285–291 (2018)

    Article  MathSciNet  Google Scholar 

  17. Y.L. Li, J. Feng, X.G. Meng, Y.F. Yu, Phys. A Stat. Mech. Appl. 387(2–3), 717–724 (2008)

    Article  Google Scholar 

  18. H.K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  19. S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, J. Pereira. arXiv:1906.01645 (2019)

  20. W. Mei-Yu, Y. Feng-Li, Chin. Phys. B 20(12), 120309 (2011)

    Article  Google Scholar 

  21. B.K. Behera, S. Seth, A. Das, P.K. Panigrahi, Quantum Inf. Process. 18(4), 108 (2019)

    Article  ADS  Google Scholar 

  22. Z. Du, X. Li, Quantum Inf. Process. 18(7), 226 (2019)

    Article  ADS  Google Scholar 

  23. L.T. Feng, M. Zhang, Z.Y. Zhou, M. Li, X. Xiong, L. Yu, G.C. Guo, Nat. Commun. 7(1), 1–7 (2016)

    ADS  Google Scholar 

  24. M. Javed, S. Khan, S.A. Ullah, J. Russ. Laser Res. 37(6), 562–571 (2016)

    Article  Google Scholar 

  25. C. Benedetti, F. Buscemi, P. Bordone, M.G. Paris, Phys. Rev. A 87(5), 052328 (2013)

    Article  ADS  Google Scholar 

  26. L.T. Kenfack, M. Tchoffo, L.C. Fai, G.C. Fouokeng, Phys. B Condens. Matter 511, 123–133 (2017)

    Article  ADS  Google Scholar 

  27. J. Bergli, Y.M. Galperin, B.L. Altshuler, Phys. Rev. B 74(2), 052328 (2006)

    Article  Google Scholar 

  28. M. Javed, S. Khan, S.A. Ullah, Quantum Inf. Process. 17(3), 53 (2018)

    Article  ADS  Google Scholar 

  29. B.J. Dalton, J. Modern Opt. 50(6–7), 951–966 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. D. Koutsoyiannis, Hydrol. Sci. J. 47(4), 573–595 (2002)

    Article  Google Scholar 

  31. L. Zunino, D.G. Pírez, M.T. Martín, M. Garavaglia, A. Plastino, O.A. Rosso, Phys. Lett. A 372(27–28), 4768–4774 (2008)

    Article  ADS  Google Scholar 

  32. A.E. Burgess, P.F. Judy, JOSA A 24(12), B52–B60 (2007)

    Article  ADS  Google Scholar 

  33. N. Ashby, arXiv:1103.5062 (2011)

  34. S. Ryu, S.S.B. Lee, H.S. Sim, Phys. Rev. A 86(4), 042324 (2012)

    Article  ADS  Google Scholar 

  35. W.K. Wootters, Quantum Inf. Comput. 1(1), 27–44 (2001)

    MathSciNet  Google Scholar 

  36. D. McHugh, M. Ziman, V. Bužek, Phys. Rev. A 74(4), 042303 (2006)

    Article  ADS  Google Scholar 

  37. J. Hofbauer, K. Sigmund, (Cambridge University Press, 1998)

  38. T. Yu, J.H. Eberly, Opt. Commun. 264(2), 393–397 (2006)

    Article  ADS  Google Scholar 

  39. R.L. Franco, B. Bellomo, S. Maniscalco, G. Compagno, Int. J. Modern Phys. B 27(01n03), 1345053 (2013)

    Article  ADS  Google Scholar 

  40. M.A. Rossi, C. Benedetti, M.G. Paris, Int. J. Quantum Inf. 12(07n08), 1560003 (2014)

    Article  MathSciNet  Google Scholar 

  41. T.T. Arthur, T. Martin, L.C. Fai, Int. J. Quantum Inf. 15(06), 1750047 (2017)

    Article  MathSciNet  Google Scholar 

  42. F. Buscemi, P. Bordone, Phys. Rev. A 87(4), 042310 (2013)

    Article  ADS  Google Scholar 

  43. C. Benedetti, F. Buscemi, P. Bordone, M.G. Paris, Int. J. Quantum Inf. 10(08), 1241005 (2012)

    Article  MathSciNet  Google Scholar 

  44. B.B. ManDElbrot, J.W. Van Ness, SIAM Rev. 10(4), 422–437 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  45. L.M. Kaplan, C.C. Kuo, DEEE Trans. Signal Process. 42(12), 3526–3530 (1994)

    Article  ADS  Google Scholar 

  46. P. Abry, P. Flandrin, M.S. Taqqu, D. Veitch, Theory and applications of long-range dependence. 527–556(2003)

  47. A.P. Pentland, DEEE Trans. Pattern Anal. Mach. Intell. 6, 661–674 (1984)

    Article  Google Scholar 

  48. L. Zunino, D.G. Pérez, A. Kowalski, M.T. Martín, M. Garavaglia, A. Plastino, O.A. Rosso, Phys. A Stat. Mech. Appl. 387(24), 6057–6068 (2008)

    Article  Google Scholar 

  49. G. Rilling, P. Flandrin, P. Gonçalves, DEEE Int. Conf. 4, iv–489 (2005)

    Google Scholar 

  50. S. Ledesma, D. Liu, ACM Sigcomm Comput. Commun. Rev. 30(2), 4–17 (2000)

    Article  Google Scholar 

  51. D. Koutsoyiannis, Hydrol. Sci. J. 47(4), 573–595 (2002)

    Article  Google Scholar 

  52. P. Dutta, P.M. Horn, Rev. Modern Phys. 53(3), 497 (1981)

    Article  ADS  Google Scholar 

  53. H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 293(5527), 76–79 (2001)

    Article  ADS  Google Scholar 

  54. N.J. Kasdin, Proc. IEEE 83(5), 802–827 (1995)

    Article  Google Scholar 

  55. N. J. Kasdin, T. Walter, in Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 274–283. (1992)

  56. K. Lakhmanskiy, P.C. Holz, D. Schärtl, B. Ames, R. Assouly, T. Monz, R. Blatt, Phys. Rev. A 99(2), 023405 (2019)

    Article  ADS  Google Scholar 

  57. J. Mielniczuk, P. Wojdyłło, Comput. Stat. Data Anal. 51(9), 4510–4525 (2007)

    Article  Google Scholar 

  58. C. Benedetti, M.G. Paris, Phys. Lett. A 378(34), 2495–2500 (2014)

    Article  ADS  Google Scholar 

  59. K. Lemr, K. Bartkiewicz, A. Černoch, Phys. Rev. A 94(5), 052334 (2016)

    Article  ADS  Google Scholar 

  60. A.T. Tsokeng, M. Tchoffo, L.C. Fai, Quantum Inf. Process. 16(8), 191 (2017)

    Article  ADS  Google Scholar 

  61. L.T. Kenfack, M. Tchoffo, G.C. Fouokeng, L.C. Fai, Int. J. Quantum Inf. 15(05), 1750038 (2017)

    Article  MathSciNet  Google Scholar 

  62. C. Benedetti, M. G. Paris, F. Buscemi, P. Bordone, in 2013 22nd International Conference on Noise and Fluctuations (ICNF) (pp. 1–4). IEEE (2013)

  63. L.T. Kenfack, M. Tchoffo, M. Javed, L.C. Fai, Quantum Inf. Process. 19(4), 1–26 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atta Ur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.U., Noman, M., Javed, M. et al. Dynamics of bipartite quantum correlations and coherence in classical environments described by pure and mixed Gaussian noises. Eur. Phys. J. Plus 136, 846 (2021). https://doi.org/10.1140/epjp/s13360-021-01856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01856-4

Navigation