Skip to main content
Log in

Degree of multifractality and correlations in framework of multi-dimensional complex network analysis for \(^{16}\)O–Ag/Br interactions at 60 A GeV

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nature of fractality and correlations in relativistic heavy-ion interactions of \(^{16}\)O–Ag/Br at collision energy 60 A GeV are investigated in the framework of the sandbox algorithm using the concept of isotropy and anisotropy of phase space. In this work, we have attempted to find the deterministic information in \(\eta -\phi \) space using the concept of Hurst exponent (H) by means of precise determination of topological parameters from the complex network perspective. The experimental data have been compared with Monte Carlo (MC) generated events to extract non-statistical dynamics. It has been observed that the process under study is multifractal in nature. It is also observed that the process is ruled by a small number of large fluctuations and contributes to correlated stochastic long-term positive auto-correlations. The characteristics of the multiparticle production process under study are independent of the spatial distribution of \(\eta \) and \(\phi \) space, where \(\eta \) is pseudorapidity and \(\phi \) is the azimuthal angle, but the degree of multifractality depends on the spatial distribution of pions in anisotropic phase space during the multiparticle production process. It is also observed that for different Hurst exponents, the multifractality of the experimental data sets are significantly different from the MC-simulated events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

This manuscript has associated data in a data repository. [Authors’ comment: In this paper experimental data of emulsion has been simulated by Monte Carlo Model. All data generated or analysed during this study are included in this published article. The experimental data used in the present study was published by EPL, 80 22003 (2007). https://doi.org/10.1209/0295-5075/80/22003.]

References

  1. A. Bialas, R. Peschanski, Nucl. Phys. Sect. B 273, 703–718 (1986)

    Article  ADS  Google Scholar 

  2. D. Ghosh, A. Deb, M.B. Lahiri, P. Ghosh, S.I. Ahmed, P.K. Halder, Phys. Rev. C 70, 054903–054910 (2004)

    Article  ADS  Google Scholar 

  3. D. Ghosh, A. Deb, S.R. Sahoo, P.K. Haldar, M. Mondal, EPL (Europhysics Letters) 65, 472–477 (2004)

    Article  ADS  Google Scholar 

  4. D. Ghosh, A. Deb, S. Biswas, P. Mandal, P.K. Haldar, Can. J. Phys. 85(4), 385–392 (2007)

    Article  ADS  Google Scholar 

  5. A. Tawfik, Prog. Theor. Phys. 126, 279–292 (2011)

    Article  ADS  Google Scholar 

  6. D. Ghosh, A. Deb, S. Sarkar, P.K. Haldar, Fractals 16(02), 169–174 (2008)

    Article  Google Scholar 

  7. D. Ghosh, A. Deb, S. Biswas, P. Mandal, A.K. Mallick, P.K. Haldar, Indian J. Phys. 83(10), 1463–1485 (2009)

    Article  ADS  Google Scholar 

  8. R.C. Hwa, Phys. Rev. D 41, 1456 (1990)

    Article  ADS  Google Scholar 

  9. C.B. Chiu, R.C. Hwa, Phys. Rev. D 43, 100 (1991)

    Article  ADS  Google Scholar 

  10. G. Paladin, A. Vulpiani, Phys. Rep. 156, 147 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Tawfik, J. Phys. G 40, 055109 (2013)

    Article  ADS  Google Scholar 

  12. F. Takagi, Phys. Rev. Lett. 72, 32 (1994)

    Article  ADS  Google Scholar 

  13. B.B. Mandelbrot, The Fractal Geometry of Nature. Freeman, New York (1983)

    Book  Google Scholar 

  14. A. Bonasera, Il Nuovo Cimento 109A(10), 1405 (1996)

    Article  ADS  Google Scholar 

  15. McCauley J. L. Chaos Dynamics and Fractals, Cambridge Nonlinear Science Series, vol. 2. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  16. Latora et al., Phys. Rev. Lett. 73, 1765 (1994)

  17. A. Bialas, R. Peschanski, Nucl. Phys. Sect. B 308, 857–867 (1988)

    Article  ADS  Google Scholar 

  18. E. De Wolf, I. Dremin, W. Kittel, Phys. Rep. 270, 1–141 (1996)

    Article  ADS  Google Scholar 

  19. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Phys. A 87, 316 (2002)

    Google Scholar 

  20. G.-F. Gu, W.-X. Zhou, Phys. Rev. E 74, 061104 (2006)

    Article  ADS  Google Scholar 

  21. J. Alvarez-Ramirez, C. Ibarra-Valdez, E. Rodriguez, L. Dagdug, Phys. A 387, 281 (2008)

    Article  Google Scholar 

  22. Yu. Zhou, Yee Leung, Yu. Zu-Guo, Phys. Rev. E 87, 012921 (2013)

    Article  ADS  Google Scholar 

  23. P. Mali, A. Mukhopadhyay, S.K. Manna, P.K. Haldar, G. Singh, Mod. Phys. Lett. A 32(08), 1750024 (2017)

    Article  ADS  Google Scholar 

  24. H.E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 (1951)

    Article  Google Scholar 

  25. A.W. Lo (1991) Eonometrica. 59 1279

    Article  Google Scholar 

  26. Jose Alvarez-Ramirez, Juan C. Echeverria, Eduardo Rodriguez, Phys. A 387, 6452–6462 (2008)

    Article  Google Scholar 

  27. C. Song, L.K. Gallos, S. Havlin, and H.A. Makse, J. Stat. Mech.: Theor. Exp. 3 P03006 (2007)

    Google Scholar 

  28. S. Furuya, K. Yakubo, Phys. Rev. E 84, 036118 (2011)

    Article  ADS  Google Scholar 

  29. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141–1151 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  30. L.V. Meisel, M. Johnson, P.J. Cote, Phys. Rev. A 45, 6989–6996 (1992)

    Article  ADS  Google Scholar 

  31. D.L. Wang, Z.G. Yu, V. Anh, Chin. Phys. B 21(8), 080504 (2012)

    Article  ADS  Google Scholar 

  32. S.G. De Bartolo, R. Gaudio, S. Gabriele, Water Resour. Res. 40, W02201 (2004). https://doi.org/10.1029/2003WR002760

    Article  ADS  Google Scholar 

  33. R. Gaudio, S.G. De Bartolo, L. Primavera, S. Gabriele, M. Veltri, J. Hydrol. 327, 365–375 (2006)

    Article  ADS  Google Scholar 

  34. T. Vicsek, Phys. A 168, 490–497 (1990)

    Article  Google Scholar 

  35. T. Vicsek, F. Family, P. Meakin, Multifractal geometry of diffusion-limited aggregates. Europhys. Lett. 12, 217–222 (1990)

    Article  ADS  Google Scholar 

  36. A. Ahmed, N. Subba, P.K. Haldar, A.N. Tawfik, The European Physical Journal Plus 136(1), 1–17 (2021)

    Article  Google Scholar 

  37. N. Subba, A. Ahmed, P.K. Haldar, A.N. Tawfik, International Journal of Modern Physics E 30(01), 2150002 (2021)

    Article  ADS  Google Scholar 

  38. R. Lopes, N. Betrouni, Med. Image Anal. 13, 634 (2009)

    Article  Google Scholar 

  39. Z.G. Yu, V. Anh, K.S. Lau, Phys. Rev. E 64, 031903 (2001)

    Article  ADS  Google Scholar 

  40. J.S. Gagnon, S. Lovejoy, D. Schertzer, Nonlin. Processes Geophys 13, 541 (2006)

    Article  ADS  Google Scholar 

  41. G. Boffetta, A. Mazzino, A. Vulpiani, J. Phys. A 41, 363 (2008)

    Article  Google Scholar 

  42. B. Lashermes, S. Roux, P. Abry, S. Jaffard, Eur. Phys. J. B 61, 201 (2008)

    Article  ADS  Google Scholar 

  43. E. Canessa, J. Phys. A 33, 3637 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  44. V.V. Anh, Q.M. Tieng, Y.K. Tse, Int. Trans. Oper. Res. 7, 349 (2000)

    Article  MathSciNet  Google Scholar 

  45. G. Palla, I. Dernyi, I. Farkas, T. Vicsek, Nature 435, 814 (2005)

    Article  ADS  Google Scholar 

  46. T. Tél, Á. Fülöp, T. Vicsek, Phys. A 159, 155–166 (1989)

    Article  Google Scholar 

  47. F. Kun, H. Sorge, K. Sailer, M. Hofmann, G. Bardos, W. Greiner, Phys. Lett. B 355(1995)

    Article  ADS  Google Scholar 

  48. J.-L. Liu , Z.-G. Yu, V. Anh, Chaos25 023103 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  49. G. Farkas, Á Fülöp, Annales Univ. Sci. Budapest Sect. Comp. 28 (2008) 235–248

  50. L. Van Hove, Ann. Phys. 192(1), 66–76 (1989)

    Article  ADS  Google Scholar 

  51. D. Ghosh, A. Deb, R. Sahoo, P.K. Haldar, Europhys. Lett. 56(5), 639–643 (2001)

    Article  ADS  Google Scholar 

  52. P.K. Haldar, S.K. Manna, P. Saha, D. Ghosh, Astropart. Phys. 42, 76–85 (2013)

    Article  ADS  Google Scholar 

  53. S.G. De Bartolo, R. Gaudio, S. Gabriele, Water Resour. Res. 40, 2201 (2004)

    Article  ADS  Google Scholar 

  54. W. Oach, Phys. Lett. B 247, 101–106 (1990)

    Article  ADS  Google Scholar 

  55. A.N. Kravchenko, C.W. Boast, D.G. Bullock, Agron. J. 91, 1033–1041 (1999)

    Article  Google Scholar 

  56. Y. Shimizu, S. Thurner, K. Ehrenberger. Fractals 10, 103 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. D.Ghosh of Deepa Ghosh Research Foundation, Kolkata 700031, India Prof. Argha Deb of Jadavpur University, Kolkata 700032, India, and Amitava Mukhopadhyay, The University of North Bengal for all kinds of supports and encouragement. The authors also show their deepest gratitude to the anonymous reviewer whose valuable comments make the article more accurate and readable. We would like to acknowledge the financial help sanctioned by the G.O. No. 52-Edn(B)/5B-15/2017 dt. 7.6.2017 read with 65-Edn(B)/5-15/2017 dt. 11.7.2017 for Swami Vivekananda Merit-cum-Means Scholarship, Government of West Bengal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Kr. Haldar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subba, N., Ahmed, A., Bhattacharjee, S. et al. Degree of multifractality and correlations in framework of multi-dimensional complex network analysis for \(^{16}\)O–Ag/Br interactions at 60 A GeV. Eur. Phys. J. Plus 136, 813 (2021). https://doi.org/10.1140/epjp/s13360-021-01803-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01803-3

Navigation