Skip to main content
Log in

An experimental study of hydrodynamic behavior of rotating spherical particles in a quiescent viscous fluid

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The motion of solids in a viscous fluid with nonlinear complex behavior has important applications in different industries and engineering sciences. This work experimentally investigated the free-fall behavior of rotating and non-rotating spherical particles in a viscous fluid. The effects of physical parameters, including particle size, particle density, fluid viscosity, and rotational velocity, on the terminal velocity of the falling spherical particles were examined. A high-speed camera was employed to capture the phenomena and study the free-fall behavior of the spherical solid particles in a viscous fluid. The studied spherical particles had five different densities of 2800, 7800, 7900, 8660, and 8960 kg/m3 and three varying dimensions of 4, 5, and 6 mm. To explore the effect of fluid viscosity on the terminal velocity of particles, two types of fluids with the viscosities of 0.012 and 0.014 Pa.s were used. The initial rotational velocities were 0, 600, 900, and 1200 rpm for the falling particles. The obtained results revealed that increases in the particle diameter, density, and rotational velocity, along with a decrease in fluid viscosity, accelerated the terminal velocity and shortened the time of reaching this velocity. Furthermore, an increase in the Reynolds number gave rise to a decrease in the lift coefficient. On the other hand, the accelerated dimensionless rotational velocity increased the lift coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

Abbreviations

\(m_{p}\) :

Particle mass (kg)

\(\mu_{f}\) :

Fluid viscosity (Pa.s)

\(u_{f}\) :

Fluid velocity (Pa.s)

g :

Gravity (m/s2)

\(u_{p}\) :

Rticle velocity (cm/sec)

\(F_{B}\) :

Basset force (N)

\(F_{M}\) :

Weight force (N)

\(F_{D}\) :

Drag force (N)

\(F_{b}\) :

Bouncy force (N)

\(F_{L}\) :

Lift force (N)

\(\rho_{f}\) :

Fluid density (kg/m3)

\(\rho_{s}\) :

Particle density (kg/m3)

\(C_{L}\) :

Lift coefficient

\(C_{D}\) :

Drag coefficient

\({\text{Re}}_{p}\) :

Reynolds number

\(d_{{{\text{sph}}}}\) :

Spherical diameter (mm)

\(d_{*}\) :

Dimensionless diameter

\(U_{*}\) :

Dimensionless speed

\(w\) :

Rotational velocity (rpm)

\(A\) :

Area (mm2)

\(C_{a}\) :

Added mass coefficient

\(F_{m}\) :

Added mass force (N)

\(d_{p}\) :

Particle diameter (mm)

t :

Time (sec)

\(u_{r}\) :

Relative velocity (cm/sec)

MA1:

Acceleration parameter

\(\tau\) :

Time constant

\(\gamma\) :

Dimensionless angular velocity

S :

Solid material

F :

Fluid

P :

Particle

References

  1. S. Rushd, I. Hassan, R.A. Sultan, V.C. Kelessidis, A. Rahman, H.S. Hasan, A. Hasan, Terminal settling velocity of a single sphere in drilling fluid. Part Sci. Technol. 37(8), 939–948 (2019)

    Article  Google Scholar 

  2. Y. Changfu, Q. Haiying, X. Xuchang, Lift force on rotating sphere at low Reynolds numbers and high rotational speeds. Acta Mech. Sin. 19(4), 300 (2003)

    Article  Google Scholar 

  3. H. Barkla, L. Auchterlonie, The Magnus or Robins effect on rotating spheres. J. Fluid Mech. 47(3), 437–447 (1971)

    Article  ADS  Google Scholar 

  4. G. Magnus, Ueber die abweichung der geschosse, und: ueber eine auffallende erscheinung bei rotirenden körpern. Ann. Phys. 164(1), 1–29 (1853)

    Article  Google Scholar 

  5. G.G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums (Pitt Press Cambridge, Cambridge, 1851)

    Google Scholar 

  6. G. Jeffery, On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 2(1), 327–338 (1915)

    Article  Google Scholar 

  7. W. Bickley, XV The secondary flow due to a sphere rotating in a viscous fluid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 25(170), 746–752 (1938)

    Article  Google Scholar 

  8. W. Collins, On the steady rotation of a sphere in a viscous fluid. Mathematika 2(1), 42–47 (1955)

    Article  MathSciNet  Google Scholar 

  9. S. Rubinow, J.B. Keller, The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11(3), 447–459 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Last, R.S. Schemenauer, Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Sci. 28, 110–115 (1970)

    Article  ADS  Google Scholar 

  11. M. Cooley, The slow rotation in a viscous fluid of a sphere close to another fixed sphere about a diameter perpendicular to the line of centres. Q. J. Mech. Appl. Math. 24(2), 237–250 (1971)

    Article  Google Scholar 

  12. K. Ranger, Time-dependent decay of the motion of a sphere translating and rotating in a viscous liquid. Q. J. Mech. Appl. Mech. 49(4), 621–633 (1996)

    Article  MathSciNet  Google Scholar 

  13. B. Oesterle, T.B. Dinh, Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Exp. Fluids 25(1), 16–22 (1998)

    Article  Google Scholar 

  14. P. Bagchi, S. Balachandar, Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids 14(8), 2719–2737 (2002)

    Article  ADS  Google Scholar 

  15. E. Loth, Lift of a spherical particle subject to vorticity and/or spin. AIAA J. 46(4), 801–809 (2008)

    Article  ADS  Google Scholar 

  16. E.K.W. Poon, A.S.H. Ooi, R.C.Z. Cohen, Hydrodynamic forces on a rotating sphere. Int. J. Heat Fluid Flow 42, 278–288 (2013)

    Article  Google Scholar 

  17. A. Castillo, L.M. William, J. Einarsson, B. Mena, S.G.S. Eric, R. Zenit, Drag coefficient for a sedimenting and rotating sphere in a viscoelastic fluid. Phys. Rev. Fluids 4(6), 063302 (2019)

    Article  ADS  Google Scholar 

  18. S. Rahbarshahlan, A. Ghaffarzadeh Bakhshayesh, A.R. Khosroshahi, M. Aligholami, Interface study of the fluids in passive micromixers by altering the geometry of inlets. Microsys. Technol. 27, 2791–2802 (2020)

    Article  Google Scholar 

  19. R. Heidari, A.R. Khosroshahi, B. Sadri, E. Esmaeilzadeh, The Electrohydrodynamic mixer for producing homogenous emulsion of dielectric liquids. Colloids Surf. A Physicochem. Eng. Asp. 578, 123592 (2019)

    Article  Google Scholar 

  20. K.D. Housiadas, Steady sedimentation of a spherical particle under constant rotation. Phys. Rev Fluids 4(10), 103301 (2019)

    Article  ADS  Google Scholar 

  21. A. Rostamzadeh, S. Razavi, S. Mirsajedi, Towards multidimensional artificially characteristic-based scheme for incompressible thermo-fluid problems. Mechanics 23(6), 826–834 (2017)

    Google Scholar 

  22. Hedayati Nasab S., 2017. Free Falling of Spheres in a Quiescent Fluid (Doctoral dissertation, Concordia University).

  23. N. Fathi, S.S. Aleyasin, P. Vorobieff, G. Ahmadi, Experimental and computational investigation of single particle behavior in low Reynolds number linear shear flows, arXiv:1901.07180, (2019)

  24. C. Crowe, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles (CRC Press, New York, 1998)

    Google Scholar 

  25. H. Yow, M. Pitt, A. Salman, Drag correlations for particles of regular shape. Adv. Powder Technol. 16(4), 363–372 (2005)

    Article  Google Scholar 

  26. I. Kim, S. Elghobashi, W.A. Sirignano, On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers. J. Fluid Mech. 367, 221–253 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. N. Mordant, J.F. Pinton, Velocity measurement of a settling sphere. Eur. Phys. J. B-Condens. Matter Complex Syst. 18(2), 343–352 (2000)

    Article  Google Scholar 

  28. J. Guo, Motion of spheres falling through fluids. J. Hydraul. Res. 49(1), 32–41 (2011)

    Article  Google Scholar 

  29. J. Dinesh, Modelling and Simulation of a Single Particle in Laminar Flow Regime of a Newtonian Liquid. In: COMSOL Conference. Bangalore, India. (2009)

  30. Y. Tsuji, Y. Morikawa, O. Mizuno, Experimental measurement of the Magnus force on a rotating sphere at low Reynolds numbers. (1985)

  31. F. Carranza, Y. Zhang, Study of drag and orientation of regular particles using stereo vision, Schlieren photography and digital image processing. Powder Technol. 311, 185–199 (2017)

    Article  Google Scholar 

  32. P.P. Brown, D.F. Lawler, Sphere drag and settling velocity revisited. J. Environ. Eng. 129(3), 222–231 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Nobakhti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehgan, H., Nobakhti, M.H., Esmaeilzadeh, E. et al. An experimental study of hydrodynamic behavior of rotating spherical particles in a quiescent viscous fluid. Eur. Phys. J. Plus 136, 967 (2021). https://doi.org/10.1140/epjp/s13360-021-01795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01795-0

Navigation