Skip to main content
Log in

Numerical study of the boundary layer problem over a flat plate by orthogonal cubic spline basis functions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the laminar boundary layer flow over a flat plate, governed by the Prandtl equations, has been studied numerically. The problem is a dimensionless third-order system of nonlinear ordinary differential equations which arises in boundary layer flow. This system is solved using an orthogonal basis for the space of cubic splines (O-splines), as an approximation tool. Some new properties of O-splines have been explored. Also, more accurate values for the initial value of the second derivative of the Falkner–Skan equation are obtained as an initial value inverse problem. Using the new initial values, the problem becomes a first-order system of ordinary differential equations which is solved by the RK45 method and the results are compared with the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. S.M. Ghiaasiaan, Convective Heat and Mass Transfer (CRC Press, Taylor & Francis Group, Boca Raton, 2018)

    Book  Google Scholar 

  2. M. Favre-Marinet, S. Tardu, Convective Heat Transfer (John Wiley & Sons Inc, New York, 2009)

    Book  Google Scholar 

  3. C. Liu, W. Cao, Study of predicting aerodynamic heating for hypersonic boundary layer flow over a flat plate. Int. J. Heat and Mass Transf. 111, 1079–1086 (2017)

    Article  Google Scholar 

  4. S. Mukhopadhyay, Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation. Ain Shams Eng. J. 4(3), 485–491 (2013)

    Article  Google Scholar 

  5. A. Nasr, Heat and mass transfer for liquid film condensation along a vertical channel covered with a thin porous layer. Int. J. Thermal Sci. 124, 288–299 (2018)

    Article  Google Scholar 

  6. Y. Han, X. Wang, H. Sun, G. Zhang, L. Guo, J. Tu, CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance. Energy 167, 469–483 (2019)

    Article  Google Scholar 

  7. A. Chavan Madhusudan, Oxygen mass transfer in biological treatment system in the presence of non-aqueous phase liquid. APCBEE Proc. 9, 54–58 (2014)

    Article  Google Scholar 

  8. K. Yogi, M. Manik, M. Godase, S. Shetty, S. Krishnan, S.V. Prabhu, Experimental investigation on the local heat transfer with a circular jet impinging on a metal foamed flat plate. Int. J. Heat Mass Transf. 162, 120405 (2020)

    Article  Google Scholar 

  9. M. Seddiq, M. Maerefat, Analytical solution for heat transfer problem in a cross-flow plate heat exchanger. Int. J. Heat Mass Transf. 163, 120410 (2020)

    Article  Google Scholar 

  10. Y.L. Yu, X.D. Li, Z.H. Wang, L. Bao, Theoretical modeling of heat transfer to flat plate under vibrational excitation freestream conditions. Int. J. Heat Mass Transf. 151, 119434 (2020)

    Article  Google Scholar 

  11. B. Zhao, W. Long, R. Zhou, A convective analytical model in turbulent boundary layer on a flat plate based on the unifying heat flux formula. Int. J. Thermal Sci. 163, 106784 (2021)

    Article  Google Scholar 

  12. N.A. Zainal, R. Nazar, K. Naganthran, I. Pop, MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chin. J. Phys. 66, 630–644 (2020)

    Article  MathSciNet  Google Scholar 

  13. M. Yang, Z. Wang, L. Chen, W. Tang, Dynamic heat transfer model of flat plate solar water collectors with consideration of variable flow rate. Solar Energy 212, 34–47 (2020)

    Article  ADS  Google Scholar 

  14. R. Khademi, A. Razminia, V.I. Shiryaev, Conjugate-mixed convection of nanofluid flow over an inclined flat plate in porous media. Appl. Math. Comput. 366, 124761 (2020)

    MathSciNet  MATH  Google Scholar 

  15. M. Esmaeilpour, D.D. Ganji, Application of He is homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate. Phys. Lett. A 372, 33–38 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. M.M. Rashidi, S.A. Mohimanianpour, Analytic approximate solutions for unsteady boundary-layer flow and heat transfer due to a stretching sheet by homotopy analysis method. Nonlinear Anal. Modell. Control 15(1), 83–95 (2010)

    Article  MathSciNet  Google Scholar 

  17. A. Ali, A. Mehmood, Homotopy analysis of unsteady boundary layer flow adjacent to permeable stretching surface in a porous medium. Commun. Nonlinear Sci. Numer. Simul. 13, 340–349 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.R. Ghotbi, H. Bararnia, G. Domairry, A. Barari, Investigation of a powerful analytical method into natural convection boundary layer flow. Commun. Nonlinear Sci. Numer. Simul. 14, 2222–2228 (2009)

    Article  ADS  Google Scholar 

  19. B. Šarler, I. Aziz, Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems. Int. J. Thermal Sci. 50, 686–697 (2011)

    Article  Google Scholar 

  20. H. Aminikhah, J. Alavi, B-spline collocation and quasi-interpolation methods for boundary layer flow and convection heat transfer over a flat plate. Calcolo 54, 299–317 (2017)

    Article  MathSciNet  Google Scholar 

  21. K.A. Hoffmann, A.T. Chiang Computational Fluid Dynamics, Volume I Fourth edition, Engineering education system, (2000)

  22. T.J. Rivlin, An Introduction to the Approximation of Functions (Blaisdell Publishing Company, Waltham, 1969)

    MATH  Google Scholar 

  23. W.F. Ames, Numerical Methods for Partial Differential Equations, 2nd edn. (Academic press, inc., London, 1977)

    MATH  Google Scholar 

  24. R.A. DeVore, G.G. Lorent, Constructive Approximation (Springer-Verlag, Berlin, 1993)

    Book  Google Scholar 

  25. C. De Boor, A Practical Guide to Splines (Springer-Verlag, New York, 2001)

    MATH  Google Scholar 

  26. W.M. Kays, M.E. Crawford, Convective Heat and Mass Transfer, 3/e (McGraw-Hill, New York, 1993)

    Google Scholar 

  27. H. Blasius, Grenzschichten in flüssigkeiten mit kleiner reibung. Z. Math. Phys. 56, 1–37 (1908)

    MATH  Google Scholar 

  28. L. Howarth, On the solution of the laminar boundary layer equation. Proc. Roy. Soc. Lond. 164, 547–579 (1938)

    ADS  MATH  Google Scholar 

  29. J.C. Mason, G. Rodriguez, S. Seatzu, Orthogonal splines based on B-splines with applications to least squares, smoothing and regularisation problems. Numer. Algorithms 5, 25–40 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Alavi , H. Aminikhah, New orthogonal bases for space of cubic splines and applications to nonlinear parabolic partial differential equations, submitted, (2020)

  31. J. Alavi, H. Aminikhah, Orthogonal cubic spline basis and its applications to a partial integro-differential equation with a weakly singular kernel. Comput. Appl. Math. 40, 55 (2021). https://doi.org/10.1007/s40314-021-01442-5

    Article  MathSciNet  Google Scholar 

  32. F. Mirzaee, S. Alipour, Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order. J. Comput. Appl. Math. 366 (2020), Article 112440

  33. R.H. Byrd, R.B. Schnabel, G.A. Shultz, A trust region algorithm for nonlinearly constrained optimization. SIAM J. Numer. Anal. 24, 1152–1170 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  34. Y. X. Yuan, Review of trust region algorithms for optimization, ICIAM99 In: Proceedings of the Fourth International Congress on Industrial and Applied Mathematics. Oxford University Press, Edinburgh (2000)

  35. F.M. White, Viscous Fluid Flow, 2nd edn. (McGraw-Hill, New York, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Aminikhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, J., Aminikhah, H. Numerical study of the boundary layer problem over a flat plate by orthogonal cubic spline basis functions. Eur. Phys. J. Plus 136, 780 (2021). https://doi.org/10.1140/epjp/s13360-021-01788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01788-z

Navigation