Skip to main content
Log in

Quantum correlation in the bilinear–biquadratic model for iron-based superconductors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quantum correlation in the spin-1 bilinear–biquadratic model is investigated using the SU(3) flavor-wave formalism. The calculations are performed for the model in the quadrupolar phases. We calculate the von Neumann entropy as a function of the biquadratic couplings \(J_{bq_{\nu }}\), \(\nu =1,2\) and next-nearest-neighboring exchange interactions on square lattice with aim to verify the effect of the different phase transitions, like the transition between nematic phases, on quantum entanglement. Calculations using density matrix renormalization group for the behavior of the concurrence as a function of the biquadratic interaction \(J_{bq_{2}}\) are also presented.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Kartsev, M. Augustin, R.F.L. Evans, K.S. Novoselov, E.J.G. Santos, npj Comput. Mater. 6, 150 (2020)

    Article  ADS  Google Scholar 

  2. A. Smerald, N. Shannon, Phys. Rev. B 88, 184430 (2013)

    Article  ADS  Google Scholar 

  3. W.-J. Hu, H.-H. Lai, S.-S. Gong, R. Yu, E. Dagotto, Q. Si, Phys. Rev. Res. 2, 023359 (2020)

  4. A. Läuchli, F. Mila, K. Penc, Phys. Rev. Lett. 97, 087205 (2006)

    Article  ADS  Google Scholar 

  5. A. Läuchli, F. Mila, K. Penc, Phys. Rev. Lett. 97, 229901 (2006)

    Article  ADS  Google Scholar 

  6. A. Joshi, M. Ma, F. Mila, D.N. Shi, F.C. Zhang, Phys. Rev. B 60, 6584 (1999)

    Article  ADS  Google Scholar 

  7. L.S. Lima, J. Magn. Magn. Mater. 428, 448 (2017)

    Article  ADS  Google Scholar 

  8. L.S. Lima, J. Magn. Magn. Mater. 525, 167657 (2021)

    Article  Google Scholar 

  9. L.S. Lima, Eur. Phys. J. D 75, 2 (2021)

    Article  ADS  Google Scholar 

  10. C. Luo, T. Datta, D.X. Yao, Phys. Rev. B 93, 235148 (2016)

    Article  ADS  Google Scholar 

  11. A. Smerald, N. Shannon, Phys. Rev. B 88, 184430 (2013)

    Article  ADS  Google Scholar 

  12. H.H. Zhao, C. Xu, Q.N. Chen, Z.C. Wei, M.P. Qin, G.M. Zhang, T. Xiang, Phys. Rev. B 85, 134416 (2012)

  13. D. Stanek, O.P. Sushkov, G.S. Uhrig, Phys. Rev. B 84, 064505 (2011)

    Article  ADS  Google Scholar 

  14. C. Fang, H. Yao, W.-F. Tsai, J.P. Hu, S.A. Kivelson, Phys. Rev. B 77, 224509 (2008)

    Article  ADS  Google Scholar 

  15. P. Chandra, P. Coleman, A.I. Larkin, Phys. Rev. Lett. 64, 88 (1990)

    Article  ADS  Google Scholar 

  16. J.I. Latorre, A. Riera, J. Phys. A.: Math. Theor. 42, 404002 (2009)

    Article  Google Scholar 

  17. A.R. Its, B.-Q. Jin, V.E. Korepin, J. Phys. A: Math. Gen. 38, 2975 (2005)

    Article  ADS  Google Scholar 

  18. J.I. Latorre, E. Rico, G. Vidal, Quant. Inf. Comput. 4, 48 (2004)

    Google Scholar 

  19. D. Bruss, G. Leuchs, Lectures on Quantum Information (WILEY-VCH Verlag, Weinheim, 2007)

    MATH  Google Scholar 

  20. P. Calabrese, J. Cardy, J. Stat. Mech. P06002 (2004)

  21. D. Bianchini, O. A. Castro-Alvaredo, B. Doyon, E. Levi, F. Ravanini, J. Phys. A: Math. Theor. 48, 04FT01 (2014)

  22. G. Vidal, J.L. Latorre, E.I. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  23. P. Calabrese, Physica A 504, 31 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. N. Papanicolaou, Nuclear Phys. B 305, 367 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. H.-T. Wang, Y. Wang, Phys. Rev. B 71, 104429 (2005)

    Article  ADS  Google Scholar 

  26. A.S.T. Pires, Braz. J. Phys. 47, 481 (2017)

    Article  ADS  Google Scholar 

  27. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  28. S.R. White, Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

  29. S. Hill, W.K. Wooters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  30. W.K. Wooters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Council for Scientific and Technological Development (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.S. Quantum correlation in the bilinear–biquadratic model for iron-based superconductors. Eur. Phys. J. Plus 136, 789 (2021). https://doi.org/10.1140/epjp/s13360-021-01779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01779-0

Navigation