Skip to main content
Log in

Research on standard three-well stochastic resonance system and its application in early bearing fault diagnosis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The theoretical method of stochastic resonance (SR) is helpful for the extraction of mechanical fault signals in the background of strong noise. Therefore, SR has been developed rapidly in the field of mechanical fault diagnosis. In the method of fault diagnosis based on SR, the under-damped tri-stable SR system shows its superiority in performance. However, the disadvantage of this model is that the potential function of the nonlinear system is not standardized enough, which brings inconvenience to the subsequent adjustment of system parameters. In order to solve this problem, this paper proposes a standard three-well underdamped stochastic resonance system. The steady-state probability density and output signal-to-noise ratio of the system are fully studied. Finally, a fault signal detection method based on the standard three-well underdamped stochastic resonance system is proposed, and the feasibility of this method in early fault diagnosis is proved by two different experimental platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. T. Liang, H. Lu, H.X. Sun, Entropy 23, 520 (2021)

    Article  ADS  Google Scholar 

  2. T.X. Zhu, C.P. Zhang, G.B. Zhang, Shock. Vib. 1, 8899189 (2020)

    Google Scholar 

  3. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A: Math. Gen 14, L453 (1981)

    Article  ADS  Google Scholar 

  4. A. Neiman, L. Schimansky-Geier, Phys. Lett. A 197, 379 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. J.C. Tang, B.Q. Shi, Meas. Control 53, 788 (2020)

    Article  Google Scholar 

  6. J.J. Liu, Y.G. Leng, Z.H. Lai et al., Acta. Phys. Sin. 65, 197 (2016)

    Google Scholar 

  7. G. Zhang, X. Wu, J. Electron. Meas. Instrum 33, 10 (2019)

    Google Scholar 

  8. L. Lu, Y. Yuan, C. Chen et al., Appl. Sci-Basel 10, 2602 (2020)

    Article  Google Scholar 

  9. Y.F. Guo, Y.J. Shen, J.G. Tan, Mod. Phys. Lett. B 29, 1550034 (2015)

    ADS  Google Scholar 

  10. L. Lu, Y. Yuan, H. Wang et al., Symmetry-Basel 11, 965 (2019)

    Article  Google Scholar 

  11. Y.C. Huang, C.K. Hu, Comput. Phys. Commun. 182, 249 (2011)

    Article  ADS  Google Scholar 

  12. Y. Wang, S.B. Jiao, Q. Zhang et al., Chin. J. Phys. 56, 1187 (2018)

    Article  Google Scholar 

  13. X.F. Zhang, N.Q. Hu, L. Hu et al., Sci. China Technol. Sci. 56, 2115 (2013)

    Article  ADS  Google Scholar 

  14. D.Y. Han, P. Li, S.J. An et al., Mech. Syst. Signal. Pr. 70, 995 (2016)

    Article  Google Scholar 

  15. J.M. Li, X.F. Chen, Z.J. He, J. Sound. Vib 332, 5999 (2018)

    Article  ADS  Google Scholar 

  16. P.M. Shi, P. Li, S.J. An, Discrete. Dyn. Nat. Soc. 3, 1093562 (2016)

    Google Scholar 

  17. G. Zhang, Y.C. Shu, T.Q. Zhang, Mod. Phys. Lett. B 35, 2150219 (2021)

    Article  ADS  Google Scholar 

  18. P.M. Shi, X. Su, D.Y. Han, Chin. J. Phys 55, 2124 (2017)

    Article  Google Scholar 

  19. G. Zhang, Y.J. Zhang, T.Q. Zhang et al., IEEE. Access 6, 42431 (2018)

    Article  Google Scholar 

  20. A. Silchenko, C.K. Hu, Phys. Rev. E 63, 041105 (2001)

    Article  ADS  Google Scholar 

  21. G. Zhang, Y.L. Yang, T.Q. Zhang, Chin. J. Phys 60, 107 (2019)

    Article  Google Scholar 

  22. L.F. He, C. Jiang, G. Zhang et al., Chin. J. Instrum 41, 226 (2020)

    Google Scholar 

  23. L.H. Wang, X.P. Zhao, Z.X. Zhou et al., Mod. Electron. Technol. 42, 40 (2019)

    Google Scholar 

  24. Z.X. Li, X.D. Liu, X. Wang et al., J. Sound. Vib. 459, 114862 (2019)

    Article  Google Scholar 

  25. P.M. Shi, P. Li, S.J. An et al., Discrete Dyn. Nat. Soc 1, 2016 (2016)

    Google Scholar 

  26. C.B. He, P. Niu, R. Yang et al., Measurement 145, 687 (2019)

    Article  ADS  Google Scholar 

  27. P.F. Xu, Y.F. Jin, Appl. Math. Model 77, 408 (2020)

    Article  MathSciNet  Google Scholar 

  28. N.Q. Hu, (National Defense Industry Press, 2012), pp. 16–25

  29. G. Hu, (Shanghai Science Education Press, Shanghai, 1994), pp. 125–149

  30. X. Liu, J. Vib. Eng 3, 88 (2006)

    ADS  Google Scholar 

  31. H.Y. Kuang, J. Jin, Y. Su, Comput. Eng. Appl 12, 97 (2006)

    Google Scholar 

  32. CWRU.drive end bearing fault data [EB/OL]. [2019-05-15] http://csegroups.case.edu/bearingdatacenter/pages/download-data-file.

  33. G. Zhang, D.Y. Hu, T.Q. Zhang, IEEE Access 7, 58435 (2019)

    Article  Google Scholar 

  34. J.Q. Feng, S.Y. Sun, Math. Study. Res. 3, 17 (2017)

    Google Scholar 

  35. B. Wang, Y.G. Lei, N.P. Li et al., IEEE. Trans. Reliab 69, 401 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 61771085), Research Project of Chongqing Educational Commission (KJ1600407, KJQN201900601). The authors also would like to thank the anonymous reviewers for their valuable comments and suggestions. They help us to improve the work comparatively and fundamentally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Tan, C. & Zhang, G. Research on standard three-well stochastic resonance system and its application in early bearing fault diagnosis. Eur. Phys. J. Plus 136, 759 (2021). https://doi.org/10.1140/epjp/s13360-021-01741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01741-0

Navigation