Skip to main content
Log in

1-D Dirac equation in the presence of the Mathieu potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Dirac equation in the presence of the scalar and vector potentials is considered. In the case of spin symmetry, the corresponding Schrödinger-like equation in the presence of Mathieu potential is solved. The energy eigenvalues and eigenfunctions are obtained by using Fourier grid method, numerically. The numerical results are in good approximation with the analytical results. Then, by using the same method, the relativistic energy eigenvalues and eigenspinors are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Gallerati, Graphene properties from curved space Dirac equation. Eur. Phys. J. Plus 134(5), 202 (2019)

    Article  Google Scholar 

  2. F. Romeo, Conduction properties of extended defect states in Dirac materials. Eur. Phys. J. Plus 135(6), 1–7 (2020)

    Article  Google Scholar 

  3. G.F. Wei, S.H. Dong, Pseudospin symmetry in the relativistic Manning–Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term. Phys. Lett. Sect. B Nuclear Elem. Particle High-Energy Phys. 686(4–5), 288–292 (2010). https://doi.org/10.1016/j.physletb.2010.02.070

    Article  Google Scholar 

  4. J. Wang, A. Xiao, Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations. Appl. Math. Comput. 350, 348–365 (2019)

    Article  MathSciNet  Google Scholar 

  5. S. Aghaei, A. Chenaghlou, Quadratic Algebra Approach to the Dirac Equation with Spin and Pseudospin Symmetry for the 4D harmonic oscillator and U(1) monopole. Few-Body Syst. 56(1), 53–61 (2015). https://doi.org/10.1007/s00601-014-0931-2

  6. S. Aghaei, A. Chenaghlou, Solution of the Dirac equation with some superintegrable potentials by the quadratic algebra approach. Int. J. Mod. Phys. A. 29(06), 1450028 (2014). https://doi.org/10.1142/S0217751X14500286

  7. M.C. Zhang, G.Q. Huang-Fu, Pseudospin symmetry for a new oscillatory ring-shaped noncentral potential. J. Math. Phys. 52(5), 10 (2011). https://doi.org/10.1063/1.3592151

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Aydoǧdu, R. Sever, Exact pseudospin symmetric solution of the Dirac equation for pseudoharmonic potential in the presence of tensor potential. Few-Body Syst. 47(3), 193–200 (2010). https://doi.org/10.1007/s00601-010-0085-9

    Article  ADS  Google Scholar 

  9. Y. Chargui, A. Trabelsi, L. Chetouani, Bound-states of the (1 + 1)-dimensional DKP equation with a pseudoscalar linear plus Coulomb-like potential. Phys. Lett. Sect. A Gen. At. Solid State Phys. 374(29), 2907–2913 (2010). https://doi.org/10.1016/j.physleta.2010.05.025

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Chargui, L. Chetouani, A. Trabelsi, Exact solution of d-dimensional Klein-Gordon oscillator with minimal length. Commun. Theor. Phys. 53(2), 231–236 (2010). https://doi.org/10.1088/0253-6102/53/2/05

    Article  ADS  MATH  Google Scholar 

  11. C.S. Jia, Y.F. Diao, J.Y. Liu, Bounded solutions of the Dirac equation with a PT-symmetric Kink-like vector potential in two-dimensional space-time. Int. J. Theor. Phys. 47(3), 664–672 (2008). https://doi.org/10.1007/s10773-007-9490-3

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Mohammadi, S. Aghaei, A. Chenaghlou, Dirac equation in presence of the Hartmann and Higgs oscillator superintegrable potentials with the spin and pseudospin symmetries. Int. J. Mod. Phys. A 31(35), 1650195 (2016). https://doi.org/10.1142/S0217751X16501906

  13. C.S. Jia, X.P. Li, L.H. Zhang, Exact solutions of the Klein-Gordon equation with position-dependent mass for mixed vector and scalar Kink-like potentials. Few-Body Syst. 52(1–2), 11–18 (2012). https://doi.org/10.1007/s00601-011-0258-1

    Article  ADS  Google Scholar 

  14. V. Mohammadi, A. Chenaghlou, Dirac equation with anisotropic oscillator, quantum E3 and Holt superintegrable potentials and relativistic generalized Yang-Coulomb monopole system. Int. J. Geom. Methods Mod. Phys. 14(1), 1750004 (2017). https://doi.org/10.1142/S0219887817500049

  15. R. Mokhtari, R. HoseiniSani, A. Chenaghlou, Supersymmetry approach to the Dirac equation in the presence of the deformed Woods-Saxon potential. Eur. Phys. J. Plus 134(9), 446 (2019). https://doi.org/10.1140/epjp/i2019-12818-4

  16. S. Aghaei, A. Chenaghlou, Dirac equation and some quasi-exact solvable potentials in the Turbiner’s classification. Commun. Theor. Phys. 60(3), 296–302 (2013). https://doi.org/10.1088/0253-6102/60/3/07

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics. Phys. Rep. 251(5–6), 267–385 (1995). https://doi.org/10.1016/0370-1573(94)00080-M

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A.G. Ushveridze, Quasi-exactly solvable models in quantum mechanics (2017). https://doi.org/10.1201/9780203741450

  19. C.L. Ho, P. Roy, Quasi-exact solvability of the Pauli equation. J. Phys. A Math. Gen. 36(16), 4617–4628 (2003). https://doi.org/10.1088/0305-4470/36/16/311

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Chenaghlou, S. Aghaei, N.G. Niari, The solution of d+1-dimensional Dirac equation for diatomic molecules with the Morse potential. Eur. Phys. J. D 75(4), 1–7 (2021). https://doi.org/10.1140/epjd/s10053-021-00156-x

    Article  ADS  Google Scholar 

  21. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics—A Unified Introduction with Applications, Vol. 30 (1988)

  22. H. Ciftci, R.L. Hall, N. Saad, Asymptotic iteration method for eigenvalue problems. J. Phys. A Math. Gen. 36(47), 11807–11816 (2003). https://doi.org/10.1088/0305-4470/36/47/008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. H. Ciftci, R.L. Hall, N. Saad, Construction of exact solutions to eigenvalue problems by the asymptotic iteration method. J. Phys. A Math. Gen. 38(5), 1147–1155 (2005). https://doi.org/10.1088/0305-4470/38/5/015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S.-H. Dong, Factorization Method in Quantum Mechanics (2007). https://doi.org/10.1007/978-1-4020-5796-0

  25. C. Daskaloyannis, Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems. J. Math. Phys. 42(3), 1100–1119 (2001). https://doi.org/10.1063/1.1348026

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Chenaghlou, S. Aghaei, R. Mokhtari, Quasi-exact and asymptotic iterative solutions of Dirac equation in the presence of some scalar potentials. Pramana J. Phys. 94(1), 151 (2020). https://doi.org/10.1007/s12043-020-02024-6

  27. A. Chenaghlou, S. Aghaei, N.G. Niari, Dirac particles in the presence of a constant magnetic field and harmonic potential with spin symmetry. Mod. Phys. Lett. A 36(16), 2150109 (2021)

  28. X.Q. Zhao, C.S. Jia, Q.B. Yang, Bound states of relativistic particles in the generalized symmetrical double-well potential. Phys. Lett. Sec. A Gen. Atom. Solid State Phys. 337(3), 189–196 (2005). https://doi.org/10.1016/j.physleta.2005.01.062

    Article  MATH  Google Scholar 

  29. A. Chenaghlou, H. Fakhri, Supersymmetry approaches to the radial bound states of the hydrogen-like atoms. Int. J. Quantum Chem. 101(3), 291–304 (2005). https://doi.org/10.1002/qua.20276

    Article  Google Scholar 

  30. C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, X.L. Peng, Relativistic energies for diatomic molecule nucleus motions with the spin symmetry. Phys. Lett. Sec. A Gen. Atom. Solid State Phys. 379(3), 137–142 (2015). https://doi.org/10.1016/j.physleta.2014.10.034

    Article  MathSciNet  MATH  Google Scholar 

  31. G.-F. Wei, S.-H. Dong, Algebraic approach to pseudospin symmetry for the Dirac equation with scalar and vector modified Pöschl–Teller potentials. EPL Europhys. Lett. 87(4), 40004 (2009)

    Article  ADS  Google Scholar 

  32. J. Braun, Q. Su, R. Grobe, Numerical approach to solve the time-dependent Dirac equation. Phys. Rev. A 59(1), 604 (1999)

    Article  ADS  Google Scholar 

  33. U. Becker, N. Grün, W. Scheid, G. Soff, Nonperturbative treatment of excitation and ionization in \(u^{92+}+u^{91+}\) collisions at 1 gev/amu. Phys. Rev. Lett. 56(19), 2016 (1986)

    Article  ADS  Google Scholar 

  34. R. Meyer, Trigonometric interpolation method for one-dimensional quantum-mechanical problems. J. Chem. Phys. 52(4), 2053–2059 (1970)

    Article  ADS  Google Scholar 

  35. B. Ji, L. Zhang, A dissipative finite difference Fourier pseudo-spectral method for the Klein-Gordon-Schrödinger equations with damping mechanism. Appl. Math. Comput. 376, 125148 (2020)

    MathSciNet  MATH  Google Scholar 

  36. E. Ackad, M. Horbatsch, Numerical solution of the Dirac equation by a mapped Fourier grid method. J. Phys. A Math. Gen. 38(14), 3157 (2005)

    Article  MathSciNet  Google Scholar 

  37. A. Arima, M. Harvey, K. Shimizu, Pseudo LS coupling and pseudo SU3 coupling schemes. Phys. Lett. B 30(8), 517–522 (1969). https://doi.org/10.1016/0370-2693(69)90443-2

    Article  ADS  Google Scholar 

  38. K.T. Hecht, A. Adler, Generalized seniority for favored J 0 pairs in mixed configurations. Nucl. Phys. Sect. A 137(1), 129–143 (1969). https://doi.org/10.1016/0375-9474(69)90077-3

    Article  ADS  Google Scholar 

  39. A. Bohr, I. Hamamoto, B.R. Mottelson, A. Bohr, I. Hamamoto, B.R. Mottelson, Pseudospin in rotating nuclear potentials. Phys. Scr. 26(4), 267–272 (1982). https://doi.org/10.1088/0031-8949/26/4/003

    Article  ADS  Google Scholar 

  40. J. Dudek, W. Nazarewicz, Z. Szymanski, G.A. Leander, Abundance and systematics of nuclear superdeformed states; relation to the pseudospin and pseudo-SU(3) symmetries. Phys. Rev. Lett. 59(13), 1405–1408 (1987). https://doi.org/10.1103/PhysRevLett.59.1405

    Article  ADS  Google Scholar 

  41. D. Troltenier, C. Bahri, J.P. Draayer, Generalized pseudo-SU(3) model and pairing. Nucl. Phys. Sect. A 586(1), 53–72 (1995). https://doi.org/10.1016/0375-9474(94)00518-R

    Article  ADS  Google Scholar 

  42. J.N. Ginocchio, U(3) and pseudo-U(3) symmetry of the relativistic harmonic oscillator. Phys. Rev. Lett. 95(25), 10 (2020). https://doi.org/10.1103/PhysRevLett.95.252501

    Article  Google Scholar 

  43. J.N. Ginocchio, Pseudospin as a relativistic symmetry. Phys. Rev. Lett. 78(3), 436–439 (1997). https://doi.org/10.1103/PhysRevLett.78.436

    Article  ADS  Google Scholar 

  44. Z. Pachuau, B. Zoliana, D. Khating, P. Patra, R. Thapa, Application of Mathieu potential to photoemission from metals. Phys. Lett. A 275(5–6), 459–462 (2000)

    Article  ADS  Google Scholar 

  45. A. Turbiner, Quasi-exactly-solvable problems and sl(2) algebra. Commun. Math. Phys. 118(3), 467–474 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  46. G.-H. Sun, C.-Y. Chen, H. Taud, C. Yáñez-Márquez, S.-H. Dong, Exact solutions of the 1d Schrödodinger equation with the Mathieu potential. Phys. Lett. A 384(19), 126480 (2020)

  47. I. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Staunton, Z. Szotek, W. Temmerman, Onset of magnetic order in strongly-correlated systems from ab initio electronic structure calculations: application to transition metal oxides. New J. Phys. 10(6), 063010 (2008)

    Article  ADS  Google Scholar 

  48. I. Maznichenko, A. Ernst, M. Bouhassoune, J. Henk, M. Däne, M. Lueders, P. Bruno, W. Hergert, I. Mertig, Z. Szotek et al., Structural phase transitions and fundamental band gaps of mg x zn 1–x o alloys from first principles. Phys. Rev. B 80(14), 144101 (2009)

    Article  ADS  Google Scholar 

  49. M. Geilhufe, S. Achilles, M.A. Köbis, M. Arnold, I. Mertig, W. Hergert, A. Ernst, Numerical solution of the relativistic single-site scattering problem for the coulomb and the Mathieu potential. J. Phys. Condens. Matter 27(43), 435202 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Aghaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaei, S., Chenaghlou, A. & Azadi, N. 1-D Dirac equation in the presence of the Mathieu potential. Eur. Phys. J. Plus 136, 749 (2021). https://doi.org/10.1140/epjp/s13360-021-01726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01726-z

Navigation