Skip to main content
Log in

Photocatalytic degradation of methylene blue and crystal violet dyes under UV light irradiation by sonochemically synthesized CuSnSe nanocrystals

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nanosized materials exhibit a great potential for high-performance electronics applications, and the knowledge of their optoelectronic properties is essential since they are closely related to efficient electron–hole pair generation and photodetection properties. The present work consists of the high-yield synthesis of CuxSn1–xSe (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) ternary alloy nanocrystals by sonochemical exfoliation technique and comprehensive photocatalytic investigation of these alloy engineered nanocrystals. The stoichiometry, chemical composition, morphology, phase, structure, bandgaps, vibrational properties, binding energy and oxidation states of the synthesized nanocrystals are characterized by EDAX, TEM, SAED, XRD, UV-DRS, photoluminescence (PL) and Raman spectroscopy. The synthesized CuxSn1–xSe nanocrystal samples have been evaluated for their photocatalytic activity by studying the degradation of methylene blue (MB) and crystal violet (CV) dyes under UV light irradiation. The present study reveals about material photoabsorption characteristics that these materials could be used as a promising heterogeneous photocatalyst for degradation of pollutant dyes under UV irradiation. Also, it demonstrates and highlights the further alloy engineering modification of CuxSn1–xSe nanocrystals would promote the photocatalytic activity for various environmental applications or not. Experiments have also been performed for understanding the stability and reusability of the photocatalyst.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Ameen, H.K. Seo, M. Shaheer Akhtar, H.S. Shin, Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem. Eng. J. 210, 220–228 (2012). https://doi.org/10.1016/j.cej.2012.08.035

    Article  Google Scholar 

  2. H. Zhu, R. Jiang, L. Xiao, Y. Chang, Y. Guan, X. Li, G. Zeng, Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater. 169, 933–940 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.037

    Article  Google Scholar 

  3. G. Liu, L. Wang, H.G. Yang, H.M. Cheng, G.Q. Lu, Titania-based photocatalysts—crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831–843 (2010). https://doi.org/10.1039/b909930a

    Article  ADS  Google Scholar 

  4. Q. Fan, Y. Huang, C. Zhang, J. Liu, L. Piao, Y. Yu, S. Zuo, B. Li, Superior nanoporous graphitic carbon nitride photocatalyst coupled with CdS quantum dots for photodegradation of RhB. Catal. Today. 264, 250–256 (2016). https://doi.org/10.1016/j.cattod.2015.08.006

    Article  Google Scholar 

  5. J. Jiang, K. Zhang, X. Chen, F. Zhao, T. Xie, D. Wang, Y. Lin, Porous Ce-doped ZnO hollow sphere with enhanced photodegradation activity for artificial waste water. J. Alloys Compd. 699, 907–913 (2017). https://doi.org/10.1016/j.jallcom.2017.01.036

    Article  Google Scholar 

  6. W.W. Anku, S.O.B. Oppong, S.K. Shukla, E.S. Agorku, P.P. Govender, Cobalt doped ZrO2 decorated multiwalled carbon nanotube: a promising nanocatalyst for photodegradation of indigo carmine and eosin Y dyes. Prog. Nat. Sci. Mater. Int. 26, 354–361 (2016). https://doi.org/10.1016/j.pnsc.2016.06.007

    Article  Google Scholar 

  7. M.M. Sajid, S.B. Khan, N.A. Shad, N. Amin, Z. Zhang, Visible light assisted photocatalytic degradation of Crystal Violet dye and electrochemical detection of ascorbic acid using a BiVO4/FeVO4 heterojunction composite. RSC Adv. 8, 23489–23498 (2018). https://doi.org/10.1039/c8ra03890b

    Article  ADS  Google Scholar 

  8. M. Lučić Škorić, I. Terzić, N. Milosavljević, M. Radetić, Z. Šaponjić, M. Radoičić, M. Kalagasidis Krušić, Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. Eur. Polym. J. 82, 57–70 (2016). https://doi.org/10.1016/j.eurpolymj.2016.06.026

    Article  Google Scholar 

  9. T. Parangi, M.K. Mishra, Titania nanoparticles as modified photocatalysts: a review on design and development. Comments Inorg. Chem. 39, 90–126 (2019). https://doi.org/10.1080/02603594.2019.1592751

    Article  Google Scholar 

  10. C.W. Lai, S. Sreekantan, Fabrication of WO3 nanostructures by anodization method for visible-light driven water splitting and photodegradation of methyl orange. Mater. Sci. Semicond. Process. 16, 303–310 (2013). https://doi.org/10.1016/j.mssp.2012.10.007

    Article  Google Scholar 

  11. F. Dong, Y. Guo, J. Zhang, Y. Li, L. Yang, Q. Fang, H. Fang, K. Jiang, Size-controllable hydrothermal synthesis of ZnS nanospheres and the application in photocatalytic degradation of organic dyes. Mater. Lett. 97, 59–63 (2013). https://doi.org/10.1016/j.matlet.2013.01.029

    Article  Google Scholar 

  12. G. Elango, S.M. Kumaran, S.S. Kumar, S. Muthuraja, S.M. Roopan, Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 145, 176–180 (2015). https://doi.org/10.1016/j.saa.2015.03.033

    Article  ADS  Google Scholar 

  13. R. Atchudan, T.N.J.I. Edison, S. Perumal, M. Shanmugam, Y.R. Lee, Direct solvothermal synthesis of zinc oxide nanoparticle decorated graphene oxide nanocomposite for efficient photodegradation of azo-dyes. J. Photochem. Photobiol. A Chem. 337, 100–111 (2017). https://doi.org/10.1016/j.jphotochem.2017.01.021

    Article  Google Scholar 

  14. C. Racles, M.F. Zaltariov, M. Iacob, M. Silion, M. Avadanei, A. Bargan, Siloxane-based metal–organic frameworks with remarkable catalytic activity in mild environmental photodegradation of azo dyes. Appl. Catal. B Environ. 205, 78–92 (2017). https://doi.org/10.1016/j.apcatb.2016.12.034

    Article  Google Scholar 

  15. A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1–x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016). https://doi.org/10.1016/j.matdes.2016.06.007

    Article  Google Scholar 

  16. S. Feizpoor, A. Habibi-Yangjeh, I. Ahadzadeh, K. Yubuta, Oxygen-rich TiO2 decorated with c-dots: highly efficient visible-light-responsive photocatalysts in degradations of different contaminants. Adv. Powder Technol. 30, 1183–1196 (2019). https://doi.org/10.1016/j.apt.2019.03.014

    Article  Google Scholar 

  17. J. Shi, D. Ma, G.F. Han, Y. Zhang, Q. Ji, T. Gao, J. Sun, X. Song, C. Li, Y. Zhang, X.Y. Lang, Y. Zhang, Z. Liu, Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8, 10196–10204 (2014). https://doi.org/10.1021/nn503211t

    Article  Google Scholar 

  18. J. Yu, C.Y. Xu, F.X. Ma, S.P. Hu, Y.W. Zhang, L. Zhen, Monodisperse SnS2 nanosheets for high-performance photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces. 6, 22370–22377 (2014). https://doi.org/10.1021/am506396z

    Article  Google Scholar 

  19. Z. Wu, Y. Xue, Y. Zhang, J. Li, T. Chen, SnS2 nanosheet-based microstructures with high adsorption capabilities and visible light photocatalytic activities. RSC Adv. 5, 24640–24648 (2015). https://doi.org/10.1039/c5ra00395d

    Article  ADS  Google Scholar 

  20. C. Lin, X. Zhu, J. Feng, C. Wu, S. Hu, J. Peng, Y. Guo, L. Peng, J. Zhao, J. Huang, J. Yang, Y. Xie, Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 135, 5144–5151 (2013). https://doi.org/10.1021/ja400041f

    Article  Google Scholar 

  21. Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 27, 363–369 (2015). https://doi.org/10.1002/adma.201403264

    Article  Google Scholar 

  22. Y. Wu, M. Xu, X. Chen, S. Yang, H. Wu, J. Pan, X. Xiong, CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale 8, 440–450 (2016). https://doi.org/10.1039/c5nr05748e

    Article  ADS  Google Scholar 

  23. H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014). https://doi.org/10.1021/ar4002312

    Article  Google Scholar 

  24. L. Das, A. Guleria, S. Adhikari, Aqueous phase one-pot green synthesis of SnSe nanosheets in a protein matrix: negligible cytotoxicity and room temperature emission in the visible region. RSC Adv. 5, 61390–61397 (2015). https://doi.org/10.1039/c5ra09448h

    Article  ADS  Google Scholar 

  25. M.L. Liu, B. Bin Chen, R.S. Li, C.M. Li, H.Y. Zou, C.Z. Huang, Dendritic CuSe with hierarchical side-branches: synthesis, efficient adsorption, and enhanced photocatalytic activities under daylight. ACS Sustain. Chem. Eng. 5, 4154–4160 (2017). https://doi.org/10.1021/acssuschemeng.7b00126

    Article  Google Scholar 

  26. M.B. Zaman, T. Chandel, R. Poolla, Controlled hydrothermal growth and photocatalytic performance of Cu2SnSe3 nanocrystals with different morphologies for dye degradation. Mater. Res. Express. 6, 25004 (2018). https://doi.org/10.1088/2053-1591/aae96c

    Article  Google Scholar 

  27. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  ADS  Google Scholar 

  28. W. Wang, T. Ding, G. Chen, L. Zhang, Y. Yu, Q. Yang, Synthesis of Cu2SnSe3–Au heteronanostructures with optoelectronic and photocatalytic properties. Nanoscale 7, 15106–15110 (2015). https://doi.org/10.1039/c5nr04468e

    Article  ADS  Google Scholar 

  29. P. Kush, S. Deka, Anisotropic kesterite Cu2ZnSnSe4 colloidal nanoparticles: photoelectrical and photocatalytic properties. Mater. Chem. Phys. 162, 608–616 (2015). https://doi.org/10.1016/j.matchemphys.2015.06.034

    Article  Google Scholar 

  30. E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe. J. Mater. Chem. A. 4, 1848–1854 (2016). https://doi.org/10.1039/c5ta08847j

    Article  Google Scholar 

  31. C.L. Chen, H. Wang, Y.Y. Chen, T. Day, G.J. Snyder, Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A. 2, 11171–11176 (2014). https://doi.org/10.1039/c4ta01643b

    Article  Google Scholar 

  32. J. Gao, H. Zhu, T. Mao, L. Zhang, J. Di, G. Xu, The effect of Sm doping on the transport and thermoelectric properties of SnSe. Mater. Res. Bull. 93, 366–372 (2017). https://doi.org/10.1016/j.materresbull.2017.04.053

    Article  Google Scholar 

  33. J.H. Kim, S. Oh, Y.M. Kim, H.S. So, H. Lee, J.S. Rhyee, S.D. Park, S.J. Kim, Indium substitution effect on thermoelectric and optical properties of Sn1−xInxSe compounds. J. Alloys Compd. 682, 785–790 (2016). https://doi.org/10.1016/j.jallcom.2016.04.308

    Article  Google Scholar 

  34. X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu, Q. Sun, M. Hong, S.T. Pantelides, Z.G. Chen, J. Zou, High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering. Adv. Energy Mater. 9, 1–15 (2019). https://doi.org/10.1002/aenm.201803242

    Article  Google Scholar 

  35. Y.X. Chen, Z.H. Ge, M. Yin, D. Feng, X.Q. Huang, W. Zhao, J. He, Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping. Adv. Funct. Mater. 26, 6836–6845 (2016). https://doi.org/10.1002/adfm.201602652

    Article  Google Scholar 

  36. X.L. Shi, K. Zheng, W. Di Liu, Y. Wang, Y.Z. Yang, Z.G. Chen, J. Zou, Realizing high thermoelectric performance in n-type highly distorted Sb-doped SnSe microplates via tuning high electron concentration and inducing intensive crystal defects. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800775

    Article  Google Scholar 

  37. R. Chen, S. Li, J. Liu, Y. Li, F. Ma, J. Liang, X. Chen, Z. Miao, J. Han, T. Wang, Q. Li, Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim. Acta. 282, 973–980 (2018). https://doi.org/10.1016/j.electacta.2018.07.035

    Article  Google Scholar 

  38. J. Li, J. Xu, H. Wang, G.Q. Liu, X. Tan, H. Shao, H. Hu, J. Jiang, Enhanced thermoelectric performance in p-type polycrystalline SnSe by Cu doping. J. Mater. Sci. Mater. Electron. 29, 18727–18732 (2018). https://doi.org/10.1007/s10854-018-9996-x

    Article  Google Scholar 

  39. X. Shi, K. Zheng, M. Hong, W. Liu, R. Moshwan, Y. Wang, X. Qu, Z.G. Chen, J. Zou, Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe: via inducing intensive crystal imperfections and defect phonon scattering. Chem. Sci. 9, 7376–7389 (2018). https://doi.org/10.1039/c8sc02397b

    Article  Google Scholar 

  40. Y. Gong, C. Chang, W. Wei, J. Liu, W. Xiong, S. Chai, D. Li, J. Zhang, G. Tang, Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping. Scr. Mater. 147, 74–78 (2018). https://doi.org/10.1016/j.scriptamat.2017.12.035

    Article  Google Scholar 

  41. J. Gao, G. Xu, Thermoelectric performance of polycrystalline Sn1−xCuxSe (x = 0–0.03) prepared by high pressure method. Intermetallics 89, 40–45 (2017). https://doi.org/10.1016/j.intermet.2017.05.018

    Article  Google Scholar 

  42. X. Wang, X. Liu, D. Yin, Y. Ke, M.T. Swihart, Size-, shape-, and composition-controlled synthesis and localized surface plasmon resonance of copper tin selenide nanocrystals. Chem. Mater. 27, 3378–3388 (2015). https://doi.org/10.1021/acs.chemmater.5b00618

    Article  Google Scholar 

  43. N.K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, A. Dhar, The effect of doping on thermoelectric performance of p-type SnSe: promising thermoelectric material. J. Alloys Compd. 668, 152–158 (2016). https://doi.org/10.1016/j.jallcom.2016.01.190

    Article  Google Scholar 

  44. J. Fan, W. Carrillo-Cabrera, I. Antonyshyn, Y. Prots, I. Veremchuk, W. Schnelle, C. Drathen, L. Chen, Y. Grin, Crystal structure and physical properties of ternary phases around the composition Cu5Sn2Se7 with tetrahedral coordination of atoms. Chem. Mater. 26, 5244–5251 (2014). https://doi.org/10.1021/cm501899q

    Article  Google Scholar 

  45. A.M. Alotaibi, B.A.D. Williamson, S. Sathasivam, A. Kafizas, M. Alqahtani, C. Sotelo-Vazquez, J. Buckeridge, J. Wu, S.P. Nair, D.O. Scanlon, I.P. Parkin, Enhanced photocatalytic and antibacterial ability of Cu-doped anatase TiO2 thin films: theory and experiment. ACS Appl. Mater. Interfaces 12, 15348–15361 (2020). https://doi.org/10.1021/acsami.9b22056

    Article  Google Scholar 

  46. S. Mathew, P. Ganguly, S. Rhatigan, V. Kumaravel, C. Byrne, S.J. Hinder, J. Bartlett, M. Nolan, S.C. Pillai, Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity. Appl. Sci. 8, 2067 (2018). https://doi.org/10.3390/app8112067

    Article  Google Scholar 

  47. K. Patel, G.K. Solanki, K.D. Patel, V.M. Pathak, P. Chauhan, A. Patel, Synthesis and photodetection properties of sonochemically exfoliated Cu0.2Sn0.8Se nanoparticles. J. Nano-Electron. Phys. 12, 02005 (2020). https://doi.org/10.21272/JNEP.12(2).02005

    Article  Google Scholar 

  48. K. Patel, G.K. Solanki, K.D. Patel, V.M. Pathak, X-ray diffraction analysis of hexagonal klockmannite CuSe nanoparticles for photodetectors under UV light. J. Phys. Chem. C. 125, 3526 (2021). https://doi.org/10.1021/acs.jpcc.0c09353

    Article  Google Scholar 

  49. K. Patel, G. Solanki, K. Patel, V. Pathak, P. Chauhan, Investigation of optical, electrical and optoelectronic properties of SnSe crystals. Eur. Phys. J B 92, 1–11 (2019). https://doi.org/10.1140/EPJB/E2019-100306-8

    Article  MathSciNet  Google Scholar 

  50. K. Patel, P. Chauhan, A. Patel, G.K. Solanki, K. Patel, V.M. Pathak, Orthorhombic SnSe nanocrystals for visible-light photodetectors. ACS Appl. Nano Mater. 3, 11143–11151 (2020). https://doi.org/10.1021/acsanm.0c02301

    Article  Google Scholar 

  51. K. Venkataraman (ed.), The Chemistry of Synthetic Dyes (Elsevier, Amsterdam, 1971)

    Google Scholar 

  52. D.R. Paul, R. Sharma, S.P. Nehra, A. Sharma, Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC Adv. 9, 15381–15391 (2019). https://doi.org/10.1039/c9ra02201e

    Article  ADS  Google Scholar 

  53. K. Patel, G. Solanki, K. Patel, V. Pathak, P. Chauhan, Investigation of optical, electrical and optoelectronic properties of SnSe crystals. Eur. Phys. J. B. 92, 200 (2019). https://doi.org/10.1140/epjb/e2019-100306-8

    Article  ADS  Google Scholar 

  54. X. Xu, Q. Song, H. Wang, P. Li, K. Zhang, Y. Wang, K. Yuan, Z. Yang, Y. Ye, L. Dai, In-Plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces. 9, 12601–12607 (2017). https://doi.org/10.1021/acsami.7b00782

    Article  Google Scholar 

  55. F. Liu, P. Parajuli, R. Rao, P.C. Wei, A. Karunarathne, S. Bhattacharya, R. Podila, J. He, B. Maruyama, G. Priyadarshan, J.R. Gladden, Y.Y. Chen, A.M. Rao, Phonon anharmonicity in single-crystalline SnSe. Phys. Rev. B. 98, 224309 (2018). https://doi.org/10.1103/PhysRevB.98.224309

    Article  ADS  Google Scholar 

  56. M.A. Franzman, C.W. Schlenker, M.E. Thompson, R.L. Brutchey, Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 132, 4060–4061 (2010). https://doi.org/10.1021/ja100249m

    Article  Google Scholar 

  57. A. Sharma, L.S. Chongad, M. Banerjee, Microstructure and optical properties of Cu doped CdS nanostructured thin Films. J. Phys. Conf. Ser. 755, 12034 (2016). https://doi.org/10.1088/1742-6596/755/1/012034

    Article  Google Scholar 

  58. M.B. Zaman, T. Chandel, R. Poolla, Controlled hydrothermal growth and photocatalytic performance of Cu2SnSe3 nanocrystals with different morphologies for dye degradation. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/aae96c

    Article  Google Scholar 

  59. P.S. Rao, E. Hayon, Redox potentials of free radicals. IV. Superoxide and hydroperoxy radicals ·O2 and··HO2. J. Phys. Chem. 79, 397–402 (1975). https://doi.org/10.1021/j100571a021

    Article  Google Scholar 

  60. Y. Gu, Y. Su, D. Chen, H. Geng, Z. Li, L. Zhang, Y. Zhang, Hydrothermal synthesis of hexagonal CuSe nanoflakes with excellent sunlight-driven photocatalytic activity. CrystEngComm 16, 9185–9190 (2014). https://doi.org/10.1039/c4ce01470g

    Article  Google Scholar 

  61. H. Lei, H. Zhang, Y. Zou, X. Dong, Y. Jia, F. Wang, Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants. J. Alloys Compd. 809, 151840 (2019). https://doi.org/10.1016/j.jallcom.2019.151840

    Article  Google Scholar 

  62. S. Nair, J. Joy, C. Limberkar, K.D. Patel, G.K. Solanki, V.M. Pathak, Photocatalytic degradation of organic dyes by Ni (25%) doped WSe2 nanosheets. Mater. Sci. Semicond. Process. 125, 105625 (2021). https://doi.org/10.1016/j.mssp.2020.105625

    Article  Google Scholar 

  63. L. Tong, Z. Wang, C. Xia, Y. Yang, S. Yuan, D. Sun, X. Xin, Self-assembly of peptide-polyoxometalate hybrid sub-micrometer spheres for photocatalytic degradation of Methylene Blue. J. Phys. Chem. B. 121, 10566–10573 (2017). https://doi.org/10.1021/acs.jpcb.7b07100

    Article  Google Scholar 

  64. C. Xia, Z. Wang, D. Sun, B. Jiang, X. Xin, Hierarchical nanostructures self-assembled by polyoxometalate and alkylamine for photocatalytic degradation of dye. Langmuir 33, 13242–13251 (2017). https://doi.org/10.1021/acs.langmuir.7b03495

    Article  Google Scholar 

  65. S. Yu, J. Liu, Y. Zhou, R.D. Webster, X. Yan, Effect of synthesis method on the nanostructure and solar-driven photocatalytic properties of TiO2–CuS composites. ACS Sustain. Chem. Eng. 5, 1347–1357 (2017). https://doi.org/10.1021/acssuschemeng.6b01769

    Article  Google Scholar 

  66. P. Sun, S. Zhang, J. Pang, Y. Tan, D. Sun, C. Xia, X. Cheng, X. Xin, Self-assembly of ionic-liquid-type imidazolium gemini surfactant with polyoxometalates into supramolecular architectures for photocatalytic degradation of dye. J. Mol. Liq. 272, 180–187 (2018). https://doi.org/10.1016/j.molliq.2018.08.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University Grants Commission, India, for providing Fellowship (NFO-2017-18-OBC-GUJ-54983) to the corresponding author Mr. Kunjal Patel.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunjal Patel or G. K. Solanki.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1515 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, K., Parangi, T., Solanki, G.K. et al. Photocatalytic degradation of methylene blue and crystal violet dyes under UV light irradiation by sonochemically synthesized CuSnSe nanocrystals. Eur. Phys. J. Plus 136, 743 (2021). https://doi.org/10.1140/epjp/s13360-021-01725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01725-0

Navigation