Skip to main content
Log in

Distortion management of the pulse without and in the presence of Compton scattering in a three level atomic configuration

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article a new scheme of three level atomic configuration is presented. The propagation and distortion management of a pulse is investigated without and in the presence of Compton scattering effect. The absorption and dispersion of a light beam is studied with the variation of control field and probe field detuning as well as strength of control field Rabi frequency. The Compton scattering angle significantly affect the absorption, dispersion and shape of the pulse. The absorption drops to zero at resonance point, and rapid decay is noted with the Compton scattering angle \(\varphi \). The fractional change in distortion goes to \(100\%\), when \(\varphi \) exceeds from \(\varphi /6\). The fractional change in distortion with the control field Rabi frequency is smaller as compared to probe and control field detuning at the same scattered angle \(\varphi \). This work will have potential applications in measurement of atmospheric wavefront distortion through light scattering from a laser beam. It can also be employed in plasmonic crystals which is used in neon light, plasma screens, computer chips and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Ahmad, B.A. Bacha, U. Wahid et al., Eur. Phys. J. Plus 136, 275 (2021)

    Article  Google Scholar 

  2. F. Zaman, S. Ahmad, S.M. Arif et al., Eur. Phys. J. Plus 136, 110 (2021)

    Article  Google Scholar 

  3. H. Khan, M. Haneef, Bakhtawar. Chin. Opt. Lett. 17, 032701 (2019)

  4. S.M. Arif, B.A. Bacha, U. Wahid, M. Haneef, A. Ullah, Phys. Lett. A 388, 127041 (2021)

    Article  Google Scholar 

  5. M. Khan, M. Idrees, B.A. Bacha, A. Ullah, M. Haneef, Phys. Scr. 96, 055101 (2021)

    Article  ADS  Google Scholar 

  6. S.M. Arif, B.A. Bacha, U. Wahid, A. Ullah, M. Haneef, Phys. Scr. 96, 035106 (2021)

    Article  ADS  Google Scholar 

  7. S. Ali, M. Idrees, B.A. Bacha, A. Ullah, M. Haneef, Commun. Theor. Phys. 73, 015102 (2021)

    Article  ADS  Google Scholar 

  8. M.I. Khan, M. Idrees, B.A. Bacha, H. Khan, A. Ullah, M. Haneef, Phys. Scr. 95, 085102 (2020)

    Article  ADS  Google Scholar 

  9. H. Khan, M. Haneef, Bakhtawar. Chin. Phys. B 27, 014201 (2018)

  10. H. Khan, M. Haneef, Laser Phys. 27, 055201 (2017)

    Article  ADS  Google Scholar 

  11. M. Bakhtawar, B.A. Haneef, H. Bacha, M. Khan, Atif. Chin. Phys. B 27, 114215 (2018)

  12. B. Shoaib, M. Haneef, H. Khan, Bakhtawar. Commun. Theor. Phys. 71, 435 (2019)

  13. F. Romstad, P. Borri, W. Langbein, J. Mork, J.M. Hvam, IEEE Photon. Technol. Lett. 12, 1674 (2000)

    Article  ADS  Google Scholar 

  14. Y. Feng, B. M. Zhang, J. Nilsson, J. Lightwave Technol. 36, 5521–5527 (2018)

  15. P.V. Priputnev, A.I. Klimov, I.V. Pegel, V.P. Tarakanov, E.M. Totmeninov, IEEE Trans. Antennas Propag. 68, 4022–4028 (2020)

    Article  ADS  Google Scholar 

  16. H. Khan, M. Haneef, Can. J. Phys. 96, 98 (2018)

    Article  ADS  Google Scholar 

  17. D.N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tunnermann, F. Salin, Opt. Express 16, 17637 (2008)

    Article  ADS  Google Scholar 

  18. M.J. Brennan, Y. Gao, P.C. Ayala, F.C.L. Almeida, P.F. Joseph, A.T. Paschoalini, J. Sound Vib. 461, 114905 (2019). https://doi.org/10.1016/j.jsv.2019.114905

  19. K. Adhikari, S. Tatinati, K.C. Veluvolu, J.A. Chambers, IEEE Trans. Autom. Sci. Eng, 1–13 (2020)

  20. A.Q. Al-Shetwi, M.Z. Sujod, J. Telecommun. Electron. Comput. Eng. 10, 1–6 (2018)

  21. A.M. Weiner, Rev. Sci. Instum. 71, 1929 (2000)

    Article  ADS  Google Scholar 

  22. Y.A. Vlasov, S. Petit, G. Klein, B. Honerlage, C. Hirlimann, Phys. Rev. E 60, 1030–1035 (1999)

    Article  ADS  Google Scholar 

  23. R.W. Boyd, D.J. Gauthier, Slow and Fast Light, in Progress in Optics, vol. 43, ed. by E. Wolf (Elsevier, Amsterdam, 2002), pp. 497–530

    Google Scholar 

  24. J.E. Heebner, R.W. Boyd, Q. Park, Phys. Rev. E 65, 036619 (2002)

    Article  ADS  Google Scholar 

  25. Y. Xu, R.K. Lee, A. Yariv, Phys. Rev. E 62, 7389–7404 (2000)

    Article  ADS  Google Scholar 

  26. A. Yariv, Y. Xu, R.K. Lee, A. Scherer, Opt. Lett. 24, 711–713 (1999)

    Article  ADS  Google Scholar 

  27. H. Harde, S. Keiding, D. Grischkowsky, Phys. Rev. Lett. 66, 1834 (1991)

    Article  ADS  Google Scholar 

  28. R.H. Jacobsen, D.M. Mittleman, M.C. Nuss, Opt. Lett. 21, 2011 (1996)

    Article  ADS  Google Scholar 

  29. L. Thrane, R.H. Jacobsen, P. Uhd Jepsen, S.R. Keiding, Chem. Phys. Lett. 240, 330 (1995)

  30. J.T. Kindt, C.A. Schmuttenmaer, J. Phys. Chem. 100, 10373 (1996)

    Article  Google Scholar 

  31. Y. Wang, H. Po, Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification. J. Lightwave Technol. 21, 2262 (2003)

    Article  ADS  Google Scholar 

  32. W. Williams, C. Orth, R. Sacks, J. Lawson, K. Jancaitis, J. Trenholme, S. Haney, J. Auerbach, M. Henesian, P. Renard, NIF design optimization, in Inertial Confinement Fusion Annual Report (Lawrence Livermore National Laboratory, 1996) p. 184

  33. M. Shaw, W. Williams, R. House, C. Haynam, in Inertial Confinement Fusion Semiannual Report (Lawrence Livermore National Laboratory, 2004)

  34. W. Shaikh, I.O. Musgrave, A.S. Bhamra, C. Hernandez-Gomez, in Central Laser Facility Annual Report (CCLRC Rutherford AppletonLaboratory, 2005/2006) p. 199

  35. K.T. Vu, A. Malinowski, D.J. Richardson, F. Ghiringhelli, L.M.B. Hickey, M.N. Zervas, Opt. Express 14, 10996–11001 (2006)

    Article  ADS  Google Scholar 

  36. M. George, W.R. Boyd, L. Alexender, J. Daniel, Gauthier, Fiber-based slow-light technologies. J. Light Technol. 26, 3752 (2008)

  37. H.N. Yun, M.E. Kim, Y.J. Jang, M.S. Shahriar, Distortion free pulse delay system using a pair of tunable white light cavities. Opt. Express 19, 6705 (2011)

    Article  ADS  Google Scholar 

  38. M. Gonzalez, L. Thevenaz, Pulse distortion in linear slow light systems: theoretical limits and compensation strategies. Proc of Spie 7949, 79491B1–79491B8 (2011)

  39. S. Kuang, P. Du, R. Gang, Slow light based on coherent hole-burning in a doppler broadened three-level A-type atomic system. Opt Express 16, 11604 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author (A. Dahshan) extends his appreciation to Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number (RGP.2/89/42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Haneef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, W., Ahmad, J., Haneef, M. et al. Distortion management of the pulse without and in the presence of Compton scattering in a three level atomic configuration. Eur. Phys. J. Plus 136, 747 (2021). https://doi.org/10.1140/epjp/s13360-021-01721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01721-4

Navigation