Skip to main content
Log in

Design and optimization of bowtie nanoantenna for electromagnetic field enhancement

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Designing a plasmonic structure having high near field enhancement of incident field, large hot spot area, wideband resonance, and multiple resonance peaks are the key elements to obtain large electromagnetic field enhancement factor for various biosensors like surface-enhanced Raman scattering and Spasers. In this paper, we have proposed three different configurations of the bowtie nanoantenna represented as Single Bowtie Structure, Double Bowtie Structure (DBS), and Triple Bowtie Structure (TBS). Numerical simulations are performed with the characteristics of Nanoantenna and the analysis of the influence of the size parameter of the antennas along with the optimization of this parameter is performed to achieve the maximum near field enhancement. The result shows that TBS delivers the highest enhancement factor with a triple resonance peak. Whereas, in the second portion, the demonstrated results show the influence of the size on the enhancement of the incident field which further indicates, that as the size reduces the enhancement decreases. Furthermore, variations in the gap are simulated with four types having simple bowtie structure, reduced symmetry of DBS, reduced symmetry of TBS, and double reduced symmetry of TBS. The results significantly showed that type 4 configuration covers a wider wavelength with enhanced near electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Zhang, W.J. Salcedo, M.M. Rahman, A.G. Brolo, Surface-enhanced Raman scattering from bowtie nanoaperture arrays. Surf. Sci. 676, 39–45 (2018)

    Article  ADS  Google Scholar 

  2. W. Zhang, H. Fischer, T. Schmid, R. Zenobi, O.J. Martin, Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas. The J. Phys. Chem. C 113(33), 14672–14675 (2009)

    Article  Google Scholar 

  3. N.A. Hatab, C.-H. Hsueh, A.L. Gaddis, S.T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 10(12), 4952–4955 (2010)

    Article  ADS  Google Scholar 

  4. S. Wei, M. Zheng, Q. Xiang, H. Hu, H. Duan, Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array. Opt. Express 24(18), 20613–20620 (2016)

    Article  ADS  Google Scholar 

  5. A. Das, K. Kumar, A. Dhawan, Periodic arrays of plasmonic crossed-bowtie nanostructures interspaced with plasmonic nanocrosses for highly sensitive LSPR based chemical and biological sensing. RSC Adv. 11(14), 8096–8106 (2021)

    Article  ADS  Google Scholar 

  6. W. Zhang, Y. Zhang, C. Min, and X.-C. Yuan, Nonlinear effects in plasmonic bowtie gap structures, in Advanced Optical Imaging Technologies III, 2020, vol. 11549, p. 115491B: International Society for Optics and Photonics

  7. J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, B. Ren, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010)

    Article  ADS  Google Scholar 

  8. A.D. Khan, S.D. Khan, R.U. Khan, N. Ahmad, Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer. Plasmonics 9(2), 461–475 (2014)

    Article  Google Scholar 

  9. A.G. Brolo, E. Arctander, R. Gordon, B. Leathem, K.L. Kavanagh, Nanohole-enhanced Raman scattering. Nano Lett. 4(10), 2015–2018 (2004)

    Article  ADS  Google Scholar 

  10. F. Nicoli, D. Verschueren, M. Klein, C. Dekker, M.P. Jonsson, DNA translocations through solid-state plasmonic nanopores. Nano Lett. 14(12), 6917–6925 (2014)

    Article  ADS  Google Scholar 

  11. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, A. Leitenstorfer, Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103(25), 257404 (2009)

    Article  ADS  Google Scholar 

  12. M. Malakoutian, T. Byambadorj, B. Davaji, J. Richie, C.H. Lee, Optimization of the bowtie gap geometry for a maximum electric field enhancement. Plasmonics 12(2), 287–292 (2017)

    Article  Google Scholar 

  13. W. Yue, Z. Wang, J. Whittaker, F. Lopez-royo, Y. Yang, A.V. Zayats, Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers. J. Mater. Chem. C 5(16), 4075–4084 (2017)

    Article  Google Scholar 

  14. S. Cakmakyapan, N.A. Cinel, A.O. Cakmak, E. Ozbay, Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas. Opt. Express 22(16), 19504–19512 (2014)

    Article  ADS  Google Scholar 

  15. S. Sederberg, A. Elezzabi, Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. Opt. Express 19(16), 15532–15537 (2011)

    Article  ADS  Google Scholar 

  16. U. K. Khalil, S. Z. U. A. Kazmi, J. Iqbal, and A. D. Khan, A novel design of multilayered bowtie nano-antenna for SERS applications, in 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5: IEEE (2019)

  17. J. Zuloaga, E. Prodan, P. Nordlander, Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9(2), 887–891 (2009)

    Article  ADS  Google Scholar 

  18. Y. Bar-Cohen, Advances in manufacturing and processing of materials and structures. CRC Press, (2018)

  19. Z. Tai, J. Zhang, J. Gao, G. Xue, Surface-enhanced Raman scattering study of the surface coordination of porphyrins adsorbed on silver. J. Mater. Chem. 3(4), 417–420 (1993)

    Article  Google Scholar 

  20. A. Otto, A. Bruckbauer, Y. Chen, On the chloride activation in SERS and single molecule SERS. J. Mol. Struct. 661, 501–514 (2003)

    Article  ADS  Google Scholar 

  21. A.D. Khan, G. Miano, Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics 8(3), 1429–1437 (2013)

    Article  Google Scholar 

  22. S. Sederberg, A. Elezzabi, Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. Opt. Express 19, 15532–15537 (2011)

    Article  ADS  Google Scholar 

  23. Z. Li, H.T. Hattori, P. Parkinson, J. Tian, L. Fu, H.H. Tan et al., A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications. J. Phys. D Appl. Phys. 45, 305102 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sarhad University of Science and Information Technology (SUIT) and Center for Advanced Studies in Energy, University of Engineering and Technology for the support provided for this research.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqas Farooq.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, U.K., Farooq, W., Iqbal, J. et al. Design and optimization of bowtie nanoantenna for electromagnetic field enhancement. Eur. Phys. J. Plus 136, 754 (2021). https://doi.org/10.1140/epjp/s13360-021-01702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01702-7

Navigation