Skip to main content
Log in

Post-neutron mass chain yield distribution in the epi-cadmium neutron-induced fission of 232Th

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The cumulative yields of various fission products and independent yields of few fission products within the mass range of 78–153 have been measured in the epi-cadmium neutron-induced fission of 232Th by using an off-line γ-ray spectrometric technique. Charge distribution correction on the cumulative fission yields was applied to obtain the post-neutron mass chain yields. The peak-to-valley (P/V) ratio, full width at tenth maximum (FWTM) of light and heavy mass wing, the average light mass (<AL>) and heavy mass (<AH>) as well as the average number of neutrons (<ν>) emitted were obtained from the mass chain yields. The fission yield data in the 232Th(n, f) reaction were compared with the literature data as well as with the similar data in the 229Th(nth, f) reaction to examine the effect of nuclear structure and the role of standard I and standard II asymmetric mode of fission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install. 2007, 97486 (2007)

    Google Scholar 

  2. P.E. MacDonald, N. Todreas, Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity. Annual project status report 2000, INEEL/EXT-2000-00994; MIT-ANP-PR-071; Available at: http://www.osti.gov/scitech/servlets/purl/773994

  3. F. Carminati, R. Klapisch, J.P. Revol, C. Roche, J.A. Rubio, C. Rubbia, An energy amplifier for cleaner and inexhaustible nuclear energy production driven by particle beam accelerator, CERN Report No. CERN/AT/93-47 (ET) (1993)

  4. C. Rubbia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Mandrilion, J.P. Revol, C. Roche, Conceptual design of a fast neutron operated high power energy amplifier, CERN/AT/ 95–44 (ET) (1995)

  5. Accelerator driven systems: Energy generation and transmutation of nuclear waste, status report: IAEA TECDOC-985 (1997)

  6. S. Ganesan, Pramana. J. Phys. 68, 257 (2007)

    Google Scholar 

  7. Fast reactors and accelerator driven systems knowledge base, IAEA-TECDOC-1319: Thorium fuel utilization: Options and trends. Available at: https://www.iaea.org/publications/6395/thorium-fuel-utilization-options-and-trends

  8. L. Mathieu et al., Proportion for a very simple Thorium Molten Salt reactor, in Proceedings of the Global International Conference, Paper No. 428, Tsukuba, Japan (2005)

  9. S. Ganesan, Creation of Indian experimental benchmarks for thorium fuel cycle, IAEA coordinated research project on “evaluated data for thorium-uranium fuel cycle”, in 3rd Research Co-ordination Meeting, 30 January to 2 February 2006, Vienna, Austria, INDC (NDS)-0494 (2006)

  10. R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236, 683 (2006)

    Article  Google Scholar 

  11. K. Oyamatsu, H. Takeuchi, M. Sagisaka, J. Katakura, J. Nucl. Sci. Techol. 38, 477 (2001)

    Article  Google Scholar 

  12. C. Wagemans, The Nuclear Fission Process (CRC Press, London, 1990)

    Google Scholar 

  13. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic, New York, 1973)

    Google Scholar 

  14. Experimental Nuclear Reaction Data (EXFOR). Database Version of 2021-06-22. Software Version of 2021-05-26. Available at: http://www-nds.iaea.org/exfor

  15. N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A.I. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva, R.A. Forrest, T. Fukahori, N. Furutachi, S. Ganesan, Z. Ge, O.O. Gritzay, M. Herman, B. Lalremruata, Y.O. Lee, A. Makinaga, K. Matsumoto, M. Mikhaylyukova, G. Pikulina, V.G. Pronyaev, A. Saxena, O. Schwerer, S.P. Simakov, N. Soppera, R. Suzuki, X. Tao, S. Taova, V.V. Varlamov, J. Wang, S.C. Yang, V. Zerkin, Y. Zhuang, Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nucl Data Sheets 120, 272 (2014). https://doi.org/10.1016/j.nds.2014.07.065

    Article  ADS  Google Scholar 

  16. H.O. Denschlag, S.M. Qaim, J. Inorg. Nucl. Chem. 33(11), 3649 (1971)

    Article  Google Scholar 

  17. S. Amiel, H. Feldstein, T. Izak-Biran, Phys Rev. C 15, 2119 (1977)

    Article  ADS  Google Scholar 

  18. T. Izak-Biran, S. Amiel, Phys. Rev. C 16, 266 (1977)

    Article  ADS  Google Scholar 

  19. H.N. Erten, A. Grutter, E. Rossler, H.R. von Gunten, Phys. Rev. C 25, 2519 (1982)

    Article  ADS  Google Scholar 

  20. A. Srivastava, H.O. Denschlag, Radiochim. Acta 46, 17 (1989)

    Article  Google Scholar 

  21. R. Hentzschel, H.O. Denschlag, Radiochim. Acta 50, 1 (1990)

    Article  Google Scholar 

  22. H. Naik, R.J. Singh, R.H. Iyer, Eur. Phys. J. A 16, 495 (2003)

    Article  ADS  Google Scholar 

  23. H. Naik, S.P. Dange, App. Radiat Isotopes 127, 92 (2017)

    Article  Google Scholar 

  24. A. Turkevich, J.B. Niday, Phys. Rev. 84, 52 (1951)

    Article  ADS  Google Scholar 

  25. T.J. Kennet, H.G. Thode, Can. J. Phys. 35, 969 (1957)

    Article  ADS  Google Scholar 

  26. J.M. Crook, A.F. Voigt, Radiochemical studies of some Pile-neutron Fission Yields of Thorium-232, Report IS-558 (1963)

  27. R.H. Iyer, C.K. Mathews, N. Ravindran, K. Rengan, D.V. Singh, M.V. Ramaniah, H.D. Sharma, J. Inor. Nucl. Chem. 25, 465 (1963)

    Article  Google Scholar 

  28. A. Wyttenbach, H.R. von Gunten, in Pro. Conf. Physics and Chemistry of Fission, Slazburg, Austria, 1964, vol. I (IAEA, 1965), p. 415

  29. M. Bresesti, G. Burel, P. Perrari, L.G. Moretto, J. Inorg. Nucl. Chem. 29, 1189 (1967)

    Article  Google Scholar 

  30. J.W. Harvey, W.B. Clarke, D.J. Gorman, R.H. Tomilson, Can J. Chem. 46, 2911 (1968)

    Article  Google Scholar 

  31. K. Kobayashi, I. Kimura, R, KURRI-AR-3, 84 (1970)

  32. M. Brasca, A. Cessna, V. Sangiust, M. Terrani, Energy Nucl. 20, 691 (1973)

    Google Scholar 

  33. V.K.-C. Cheng, J.-H. Jean, M.-H. Yang, NSF 17, 107 (1980)

    Google Scholar 

  34. H.N. Erten, A. Grutter, E. Rossler, H.R. von Gunte, Nucl. Sci. Eng. 79, 167 (1981)

    Article  Google Scholar 

  35. A. Ramaswami, V. Natarajan, B.K. Srivastava, R.H. Iyer, J. Inorg. Nucl. Chem. 43, 3067 (1981)

    Article  Google Scholar 

  36. C. Chung, L.-J. Pan, Radiochim. Acta 38, 173 (1985)

    Article  Google Scholar 

  37. A.E. Richardson, H.L. Wright, J.L. Meason, J.R. Smith, Nucl. Sci. Eng. 94, 413 (1986)

    Article  Google Scholar 

  38. A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)

    Article  ADS  Google Scholar 

  39. H.N. Erten, N.K. Aras, J. Inorg. Nucl. Chem. 41, 149 (1979)

    Article  Google Scholar 

  40. H. Naik, R.J. Singh, S.P. Dange, Eur. Phys. J. A 56, 82 (2020)

    Article  ADS  Google Scholar 

  41. NuDat 2.6, National Nuclear Data Center, Brookhaven National Laboratory, updated 2011. Available at: http://www.nndc.bnl.gov/

  42. S.Y.F. Chu, L.P. Ekstrom, R.B. Firestone, The Lund LBNL, Nuclear Data Search, Version 2.0, February 1999, WWW Table of Radioactive Isotopes, http://nucleadata.nuclear.Ju.se/toi/

  43. J. Blachot, Ch. Fiche, Ann. Phys. (Paris) 6, 3–218 (1981)

    ADS  Google Scholar 

  44. Nuclear Energy Agency (NEA), Evaluated Nuclear Data Library Descriptions, ENDF/B-VIII.0, JEFF-3.3. Available at: http://www.oecd-nea.org/

  45. C.D. Coryell, M. Kaplan, R.D. Fink, Can J. Chem. 39, 646 (1961)

    Article  Google Scholar 

  46. N. Sugarman, A. Turkevich, in Radiochemical Studies: The Fission Product, edited by C. D. Coryell and N. Sugarman, vol. 3 (McGraw-Hill, New York, 1951), p. 1396

  47. E.K. Hyde, in The Nuclear Properties of Heavy Elements, vol. III (Presentic Hall, Englewood Cliffs, 1964), p. 215

  48. H. Naik, S.P. Dange, R.J. Singh, S.B. Manohar, Nucl. Phys. A 612, 143 (1997)

    Article  ADS  Google Scholar 

  49. T.R. England, B.F. Rider, evaluation and compilation of fission products yields. Los Alamos National Laboratory, LA-UR-94-3106, ENDF-349, ENDF/B-VI (1993)

  50. P. Moller, Nucl. Phys. A 192, 529 (1972)

    Article  ADS  Google Scholar 

  51. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  52. U. Brosa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  53. S. Hilairea, M. Girod, The AMEDEE nuclear structure database, in International Conference on Nuclear Data for Science and Technology (2007). https://doi.org/10.1051/ndata:07709. http://www-phynu.cea.fr/HFB-Gogny.htm

  54. S. Katcoff, Nucleonics 18, 201 (1960)

    Google Scholar 

  55. R.S. Iyer, H.C. Jain, M. N. Namboodiri, M. Rajgopalan Rajkishore, M.V. Ramaniah, C.L. Rao, N. Ravindran, H. D. Sharma, in Proc. Conf. Physics and Chemistry of Fission, Vienna, Austria, March 22, 1965, vol. I (IAEA, 1965), p. 439

  56. M.N. Namboodiri, M. Rajgopalan Rajkishore, M.V. Ramaniah, J. Inorg. Nucl. Chem. 30, 2305 (1968)

    Article  Google Scholar 

  57. H. Naik, A.G.C. Nair, P.C. Kalsi, A.K. Pandey, R.J. Singh, A. Ramaswami, R.H. Iyer, Radiochim. Acta 75, 69 (1996)

    Article  Google Scholar 

  58. R. Stella, L.G. Moretto, V. Maxia, M. Dicasa, V. Crepsi, M.A. Roller, J. Inor. Nucl. Chem. 31, 3739 (1969)

    Article  Google Scholar 

  59. W.A. Myers, M.V. Kantelo, R.L. Osborne, A.L. Prindle, D.R. Nethaway, Phys. Rev. C 18, 1700 (1978)

    Article  ADS  Google Scholar 

  60. R.A. Siga, M.V. Kantelo, D.H. Sisson, A.L. Prindle, D.R. Nethaway, Phys. Rev. 22, 245 (1983)

    Google Scholar 

  61. R.R. Rickard, C.F. Goeking, E.I. Wyatt, Nucl. Sci. Eng. 23, 115 (1965)

    Article  Google Scholar 

  62. J.G. Cunninghame, J. Inorg. Nucl. Chem. 4, 1 (1957)

    Article  Google Scholar 

  63. D.C. Hoffman, M.M. Hoffman, Ann. Rev. Nucl. Part. Sci. 24, 151 (1974)

    Article  ADS  Google Scholar 

  64. H. Naik, S.P. Dange, W. Jang, R.J. Singh, Eur. Phys. J. 56(9), 227 (2020)

    Article  ADS  Google Scholar 

  65. B.F. Rider, in Compilation of Fission Products Yields, NEDO, 12154 3c ENDF-327, General Electric Co., Pleasanton, CA (USA). Vallecitos Nuclear Centre (1981)

  66. G. Scamps, C. Simenel, Nature 564, 382 (2018)

    Article  ADS  Google Scholar 

  67. G. Scamps, C. Simenel, Phys. Rev. C 100, 041602(R) (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. R. H. Iyer, earlier head of Radiochemistry Division, BARC, for his keen interest and support during this work. The authors are also thankful to staff of the reactor APSARA and CIRUS at BARC for their help in providing the irradiation facility and successfully carrying out the irradiations during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Dange, S.P., Jang, W. et al. Post-neutron mass chain yield distribution in the epi-cadmium neutron-induced fission of 232Th. Eur. Phys. J. Plus 136, 694 (2021). https://doi.org/10.1140/epjp/s13360-021-01690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01690-8

Navigation