Skip to main content

Enhancing photon generation in cavity through antiresonant terms of the vacuum Rabi coupling

Abstract

The Rabi model describes the simplest interaction between a two-level system and a bosonic mode beyond the rotating wave approximation. The antiresonant terms that result from this coherent interaction play an important role. In this paper, we go beyond the rotating wave approximation even for the interaction with vacuum. This leads to the ’incoherent’ antiresonant terms. Using the master equation which includes both coherent and incoherent antiresonant terms, we numerically compute the mean photon number and show that these incoherent antiresonant terms enhance the generation of mean photon number. Moreover we study numerically the effect of the detuning and show that it also enhances the generation of photons. Finally, we generalize our result to two two-level and two-mode systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Edwin T. Jaynes, Frederick W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 5(1), 89–109 (1963)

    Article  Google Scholar 

  2. Gerhard Rempe, Herbert Walther, Norbert Klein, Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353–356 (1987)

    Article  ADS  Google Scholar 

  3. M. Weidinger, B.T.H. Varcoe, R. Heerlein, H. Walther, Trapping states in the micromaser. Phys. Rev. Lett. 82(19), 3795 (1999)

    Article  ADS  Google Scholar 

  4. Alexandre Blais, Jay Gambetta, Andreas Wallraff, David I. Schuster, Steven M. Girvin, Michel H. Devoret, Robert J. Schoelkopf, Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75(3), 032329 (2007)

    Article  ADS  Google Scholar 

  5. Alexandre Blais, Ren-Shou. Huang, Andreas Wallraff, Steven M. Girvin, R. Jun Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69(6), 062320 (2004)

    Article  ADS  Google Scholar 

  6. I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431(7005), 159–162 (2004)

    Article  ADS  Google Scholar 

  7. Andreas Wallraff, David I. Schuster, Alexandre Blais, Luigi Frunzio, R.-S. Huang, Johannes Majer, Sameer Kumar, Steven M. Girvin, Robert J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162–167 (2004)

    Article  ADS  Google Scholar 

  8. J. Johansson, S. Saito, T. Meno, H. Nakano, M. Ueda, K. Semba, Hideaki Takayanagi, Vacuum rabi oscillations in a macroscopic superconducting qubit l c oscillator system. Phys. Rev. Lett. 96(12), 127006 (2006)

    Article  ADS  Google Scholar 

  9. Daniel Braak, Integrability of the rabi model. Phys. Rev. Lett. 107(10), 100401 (2011)

    Article  ADS  Google Scholar 

  10. I.I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652 (1937)

    Article  ADS  Google Scholar 

  11. RobertH. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99 (1954)

    Article  ADS  Google Scholar 

  12. J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112(5), 1555 (1958)

    Article  ADS  Google Scholar 

  13. Michael Tavis, Frederick W. Cummings, Exact solution for an n-molecule-radiation-field hamiltonian. Phys. Rev. 170(2), 379 (1968)

    Article  ADS  Google Scholar 

  14. Anton Frisk Kockum, Adam Miranowicz, Simone De Liberato, Salvatore Savasta, Franco Nori, Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1(1), 19–40 (2019)

    Article  Google Scholar 

  15. Keiji Saito, Martijn Wubs, Sigmund Kohler, Yosuke Kayanuma, Peter Hänggi, Dissipative landau-zener transitions of a qubit: Bath-specific and universal behavior. Phys. Rev. B 75(21), 214308 (2007)

    Article  ADS  Google Scholar 

  16. Martijn Wubs, Sigmund Kohler, Peter Hänggi, Entanglement creation in circuit qed via landau-zener sweeps. Phys. E: Low-dimensional Syst. Nanostruct. 40(1), 187–197 (2007)

    Article  ADS  Google Scholar 

  17. Clive Emary, Tobias Brandes, Chaos and the quantum phase transition in the dicke model. Phys. Rev. E 67(6), 066203 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. David Zueco, Georg M. Reuther, Sigmund Kohler, Peter Hänggi, Qubit-oscillator dynamics in the dispersive regime: analytical theory beyond the rotating-wave approximation. Phys. Rev. A 80(3), 033846 (2009)

    Article  ADS  Google Scholar 

  19. A. Lupaşcu, E.F.C. Driessen, L. Roschier, C.J.P.M. Harmans, J.E. Mooij, High-contrast dispersive readout of a superconducting flux qubit using a nonlinear resonator. Phys. Rev. Lett. 96(12), 127003 (2006)

    Article  ADS  Google Scholar 

  20. L. Garziano, R. Stassi, V. Macrì, A.F. Kockum, S. Savasta, F. Nori, Multiphoton quantum rabi oscillations in ultrastrong cavity qed. Phys. Rev. A 92(6), 063830 (2015)

    Article  ADS  Google Scholar 

  21. T. Niemczyk et al., Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010)

    Article  Google Scholar 

  22. Sahel Ashhab, Franco Nori, Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81(4), 042311 (2010)

    Article  ADS  Google Scholar 

  23. Andrew P. Hines, Christopher M. Dawson, Ross H. McKenzie, G.J. Milburn, Entanglement and bifurcations in jahn-teller models. Phys. Rev. 70(2), 022303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, E. Solano, Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys. 91(2), 025005 (2019)

    Article  ADS  Google Scholar 

  25. Luigi Garziano, Vincenzo Macrì, Roberto Stassi, Omar Di. Stefano, Franco Nori, Salvatore Savasta, One photon can simultaneously excite two or more atoms. Phys. Rev. Lett. 117(4), 043601 (2016)

    Article  ADS  Google Scholar 

  26. Xin Wang, Adam Miranowicz, Hong-Rong. Li, Franco Nori, Observing pure effects of counter-rotating terms without ultrastrong coupling: a single photon can simultaneously excite two qubits. Phys. Rev. A 96(6), 063820 (2017)

    Article  ADS  Google Scholar 

  27. T. Werlang, A.V. Dodonov, E.I. Duzzioni, C.J. Villas-Bôas, Rabi model beyond the rotating-wave approximation: generation of photons from vacuum through decoherence. Phys. Rev. A 78(5), 053805 (2008)

    Article  ADS  Google Scholar 

  28. C.S. Munoz, A.F. Kockum, A. Miranowicz, F. Nori. Ultrastrong-coupling effects induced by a single classical drive in jaynes-cummings-type systems. arXiv preprint arXiv:1910.12875, (2019)

  29. Ye-Hong. Chen, Wei Qin, Xin Wang, Adam Miranowicz, Franco Nori, Shortcuts to adiabaticity for the quantum rabi model: efficient generation of giant entangled cat states via parametric amplification. Phys. Rev. Lett. 126(2), 023602 (2021)

    Article  ADS  Google Scholar 

  30. C. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics Springer Series in Synergetics. (Springer, Berlin, 2004)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported in part by Malaysia Higher Education Ministry Research Grant FRGS 17-024-0590. AM would like to thank Prof Ficek Zbigniew for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azeddine Messikh.

Appendix A. Equation of motion using modified input-output theory

Appendix A. Equation of motion using modified input-output theory

The antiresonant terms that result from the interaction of a system with vacuum are usually ignored in the derivation of master equation [30]. In this Appendix we show how to generalize this master equation by taking into account these antiresonant terms in the quantum Ito stochastic differential equation.

Our model consists of a system interacting with a bath. The Hamiltonian of the system-bath is typically written as the sum of three Hamiltonians

$$\begin{aligned} H = H_{sys} + H_B + H_{int}, \end{aligned}$$
(A.1)

where \(H_{sys}\) is the Hamiltonian of the system which will specify it later. The Hamiltonian of the bath is given by

$$\begin{aligned} H_B = \hbar \int _{0}^{\infty } d\omega \, \omega b^\dagger (\omega ) b(\omega ), \end{aligned}$$
(A.2)

while, \(H_{int}\) is the interaction Hamiltonian consisting of the sum of two Hamiltonians, the Hamiltonian \(H_{int}^{res}\) which corresponds to the resonant terms and \(H_{int}^{anti}\) corresponds to the anti-resonant terms

$$\begin{aligned} H_{int}= & {} H_{int}^{res}+{H_{int}^{anti}}, \end{aligned}$$
(A.3)

where

$$\begin{aligned} H_{int}^{res}= & {} i\hbar \int _{0}^{\infty } d\omega \,\kappa (\omega ) \left( b^\dagger (\omega )\,c -c^\dagger b(\omega )\right) , \end{aligned}$$
(A.4)
$$\begin{aligned} H_{int}^{anti}= & {} i\hbar \int _{0}^{\infty } d\omega \,\kappa (\omega ) \left( cb(\omega )-b^\dagger (\omega )c^\dagger \right) . \end{aligned}$$
(A.5)

In the standard input-output theory [30], the Hamiltonian \(H_{int}^{anti}\) is completely ignored. This is the well know the RWA, which is valid if the coupling strength is weak. Here we go beyond the RWA and keep all the antiresonant terms in the Hamiltonian \(H_{int}^{anti}\). The equations of motion for a and b are given by

$$\begin{aligned} {\dot{b}}= & {} -i \omega b +\kappa (\omega )c-{\kappa (\omega )c^\dagger }, \end{aligned}$$
(A.6)
$$\begin{aligned} {\dot{a}}= & {} \frac{i}{\hbar }[H_{sys},a] +\int _{0}^\infty d\omega \kappa (\omega ) \left\{ b^\dagger (\omega )[a,c]-[a,c^\dagger ]b(\omega )\right\} \nonumber \\&+ { \int _{0}^\infty d\omega \kappa (\omega ) \left\{ [a,c]b(\omega ) -b^\dagger (\omega )[a,c^\dagger ] \right\} }, \end{aligned}$$
(A.7)

where a is an arbitrary system operator. The solution of Eq. (A.6) is

$$\begin{aligned} b(\omega )= & {} \mathrm{e}^{-i\omega (t-t_0)}b_0(\omega )+\kappa (\omega ) \int _{t_0}^t \mathrm{e}^{-i\omega (t-t')}c(t') dt'\nonumber \\&-\kappa (\omega ) \int _{t_0}^t \mathrm{e}^{-i\omega (t-t')}c^\dagger (t') dt'. \end{aligned}$$
(A.8)

The last term in Eq. (A.8) is due to the anti-resonant term. So, in weak interaction regime, one can ignore this term and write

$$\begin{aligned} b(\omega ) \approx \mathrm{e}^{-i\omega (t-t_0)}b_0(\omega )+\kappa (\omega ) \int _{t_0}^t \mathrm{e}^{-i\omega (t-t')}c(t') dt'. \end{aligned}$$
(A.9)

This is our first approximation. Substituting the solution for b, Eq. (A.9), into the equation of motion for a, Eq. (A.7), we obtain

$$\begin{aligned} {\dot{a}}= & {} \frac{i}{\hbar }[H_{sys},a] +\int _0^\infty dw \kappa (\omega )\mathrm{e}^{i\omega (t-t_0)}\, b_0^\dagger (\omega )[a,c] +\int _0^\infty dw \kappa ^2(\omega ) \int _{t_0}^t \mathrm{e}^{i\omega (t-t')}dt' c^\dagger (t')[a,c]\nonumber \\&-\int _0^\infty dw \kappa (\omega )\mathrm{e}^{-i\omega (t-t_0)}\, [a,c^\dagger ]b_0(\omega ) -\int _0^\infty dw \kappa ^2(\omega ) \int _{t_0}^t \mathrm{e}^{-i\omega (t-t')}dt' [a,c^\dagger ]c(t') \nonumber \\&+ \int _0^\infty dw \kappa (\omega )\mathrm{e}^{-i\omega (t-t_0)}\, [a,c]b_0(\omega ) + \int _0^\infty dw \kappa ^2(\omega ) \int _{t_0}^t \mathrm{e}^{-i\omega (t-t')}dt' [a,c]c(t') \nonumber \\&-\int _0^\infty dw \kappa (\omega )\mathrm{e}^{i\omega (t-t_0)}\, b_0^\dagger (\omega )[a,c^\dagger ] -\int _0^\infty dw \kappa ^2(\omega ) \int _{t_0}^t \mathrm{e}^{i\omega (t-t')}dt' c^\dagger (t')[a,c^\dagger ]. \end{aligned}$$
(A.10)

Now we use the Markov approximation. This is our second approximation. In this approximation we assume that the bandwidth of the bath is large enough so that the coupling constant \(\kappa (\omega )=\sqrt{\varGamma /\pi }\). So, the Langevin equation can be simplified and takes the form

$$\begin{aligned} {\dot{a}}= & {} \frac{i}{\hbar }[H_{sys},a]+ \left( \frac{\varGamma }{2}+i\varDelta \right) c^\dagger [a,c] -\left( \frac{\varGamma }{2}-i\varDelta \right) [a,c^\dagger ]c \nonumber \\&+ { \left( -\frac{\varGamma }{2}-i\varDelta \right) [a,c]c -\left( -\frac{\varGamma }{2}+i\varDelta \right) c^\dagger [a,c^\dagger ]} \nonumber \\&+\sqrt{\varGamma }b_{in}^\dagger [a,c-{ c^\dagger }] -\sqrt{\varGamma }[a,c^\dagger -{c}]b_{in}, \end{aligned}$$
(A.11)

where \(\varDelta \) is a result of the integral of the Cauchy principal value. We also note here that the computation of the integrals involving the counter rotating terms should be done with care. In principle, the parameter \(\kappa ^2(\omega )\) is proportional to the frequency \(\omega \), and these terms are resonant only in the negative frequencies. So, we need to transform these integrals to the negative frequencies first. This is why the negative sign appears before \(\varGamma /2\) in Eq. (A.11), that is,

$$\begin{aligned} \int _0^\infty dw \kappa ^2(\omega ) \int _{t_0}^t \mathrm{e}^{-i\omega (t-t')}dt' [a,c]c(t')\approx & {} \left( -\frac{\varGamma }{2}-i\varDelta \right) [a,c]c,\\ \int _0^\infty dw \kappa ^2(\omega ) \int _{t_0}^t \mathrm{e}^{i\omega (t-t')}dt' c^\dagger (t')[a,c^\dagger ]\approx & {} \left( -\frac{\varGamma }{2}+i\varDelta \right) c^\dagger [a,c^\dagger ]. \end{aligned}$$

Transforming the Langevin equation (A.11) to the quantum stochastic differential equation, we get

$$\begin{aligned} {da}= & {} \frac{i}{\hbar }[H_{sys},a]dt- \frac{\varGamma }{2}\left( c^\dagger c a +a c^\dagger c - 2 c^\dagger a c \right) dt -i\varDelta [c^\dagger c ,a]dt \nonumber \\&- { \frac{\varGamma }{2}\left( [a,c]c-c^\dagger [a,c^\dagger ]\right) dt -i\varDelta \left( c^\dagger [a,c^\dagger ]+[a,c]c\right) dt } \nonumber \\&+\sqrt{\varGamma }dB_{in}^\dagger [a,c] -\sqrt{\varGamma }[a,c^\dagger ]dB_{in} -\sqrt{\varGamma }dB_{in}^\dagger [a,{c^\dagger }] +\sqrt{\varGamma }[a,{c}]dB_{in}, \end{aligned}$$
(A.12)

where we use the notation \(dB_{in} = b_{in} dt\). Let us focus now on the ordinary vacuum as an input. In this case, the noise operators that depend on dB and \(dB^\dagger \) are ignored. Thus, the Ito quantum stochastic differential equation is then given by the same equation (A.12). From this equation one can find the master equation. It takes the form

$$\begin{aligned} {\dot{\rho }}= & {} -\frac{i}{\hbar }[H_{sys},\rho ]- \frac{\varGamma }{2}\left( \rho c^\dagger c +c^\dagger c \rho - 2 c \rho c^\dagger \right) -i\varDelta [c^\dagger c ,\rho ] \nonumber \\&- \frac{\varGamma }{2}\left( c[c,\rho ]-[c^\dagger ,\rho ]c^\dagger \right) -i\varDelta \left( c[c,\rho ] + [c^\dagger ,\rho ]c^\dagger \right) . \end{aligned}$$
(A.13)

The last two terms of the equation above are due to the incoherent antiresonant terms.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahiddin, M.R., Belkada, R., Mahmoud, G.S. et al. Enhancing photon generation in cavity through antiresonant terms of the vacuum Rabi coupling. Eur. Phys. J. Plus 136, 650 (2021). https://doi.org/10.1140/epjp/s13360-021-01643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01643-1