Skip to main content
Log in

Complete noncommutativity in a cosmological model with radiation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In order to try explaining the present accelerated expansion of the universe, we consider the most complete noncommutativity, of a certain type, in a Friedmann–Robertson–Walker cosmological model, coupled to a perfect fluid. We use the ADM formalism in order to write the gravitational Hamiltonian of the model and the Schutz’s formalism in order to write the perfect fluid Hamiltonian. The noncommutativity is introduced by four nontrivial Poisson brackets between all geometrical as well as matter variables of the model. Each nontrivial Poisson bracket is associated with a noncommutative parameter. We recover the description in terms of commutative variables by introducing four variables transformations that depend on the noncommutative parameters. Using those variables transformations, we rewrite the total noncommutative Hamiltonian of the model in terms of commutative variables. From the resulting Hamiltonian, we obtain the scale factor dynamical equations for a generic perfect fluid. In order to solve these equations, we restrict our attention to a model where the perfect fluid is radiation. The solutions depend on six parameters: the four noncommutative parameters, a parameter associated with the fluid energy C, and the curvature parameter k. They also depend on the initial conditions of the model variables. We compare the noncommutative solutions to the corresponding commutative ones and determine how the former ones differ from the latter ones. The comparison shows that the noncommutative model is very useful for describing the accelerated expansion of the universe. We also obtain estimates for one of the noncommutative parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.S. Snyder, Phys. Rev. 71, 38 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  2. H.S. Snyder, Phys. Rev. 72, 68 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  3. H.K. Eriksen et al., ApJ 605, 14 (2004)

    Article  ADS  Google Scholar 

  4. P. Jain, P.K. Rath, Eur. Phys. J. C 75, 113 (2015)

    Article  ADS  Google Scholar 

  5. R. Kothari, P.K. Rath, P. Jain, Phys. Rev. D 94 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Brandenberger, P.M. Ho, Phys. Rev. D 66 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Q.G. Huang, M. Li, JHEP 06, 014 (2003)

    Article  ADS  Google Scholar 

  8. S. Tsujikawa, R. Maartens, R. Brandenberger, Phys. Lett. B 574, 141 (2003)

    Article  ADS  Google Scholar 

  9. Q.G. Huang, M. Li, JCAP 11, 001 (2003)

    ADS  Google Scholar 

  10. M. Fukuma, Y. Kono, A. Miwa, Nucl. Phys. B 682, 377 (2004)

    Article  ADS  Google Scholar 

  11. H. Kim, G.S. Lee, H.W. Lee, Y.S. Myung, Phys. Rev. D 70 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Liu, X. Li, Phys. Rev. D 70 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. R.G. Cai, Phys. Lett. B 593, 1 (2004)

    Article  ADS  Google Scholar 

  14. G. Calcagni, Phys. Rev. D 70 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Calcagni, S. Tsujikawa, Phys. Rev. D 70 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Q.G. Huang, M. Li, Nucl. Phys. B 713, 219–234 (2005)

    Article  ADS  Google Scholar 

  17. H. Kim, G.S. Lee, Y.S. Myung, Mod. Phys. Lett. A 20, 271–283 (2005)

    Article  ADS  Google Scholar 

  18. G. Calcagni, Phys. Lett. B 606, 177 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. B.M. Murray, Y.S. Myung, Phys. Lett. B 642, 426 (2006)

    Article  ADS  Google Scholar 

  20. N. Li, X. Zhang, Phys. Rev. D 88 (2013)

    Article  ADS  Google Scholar 

  21. G. Calcagni, S. Kuroyanagi, J. Ohashi, S. Tsujikawa, JCAP 03, 052 (2014)

    Article  ADS  Google Scholar 

  22. E. Akofor, A.P. Balachandran, S.G. Jo, A. Joseph, B.A. Qureshi, J. High Energy Phys. 05, 092 (2008)

    Article  ADS  Google Scholar 

  23. E. Akofor, A.P. Balachandran, A. Joseph, L. Pekowsky, B.A. Qureshi, Phys. Rev. D 79 (2009)

    Article  ADS  Google Scholar 

  24. P.K. Joby, P. Chingangbam, S. Das, Phys. Rev. D 91 (2015)

    Article  ADS  Google Scholar 

  25. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  26. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  27. A. Silvestri, M. Trodden, Rep. Prog. Phys. 72 (2009)

    Article  ADS  Google Scholar 

  28. M. Li, X.D. Li, S. Wang, S. Wang, Commun. Theor. Phys. 56 (2011)

    Google Scholar 

  29. B. Vakili, P. Pedram, S. Jalalzadeh, Phys. Lett. B 687, 119 (2010)

    Article  ADS  Google Scholar 

  30. O. Obregon, I. Quiros, Phys. Rev. D 84 (2011)

    Article  ADS  Google Scholar 

  31. G. A. Monerat, E. V. Corrêa Silva, C. Neves, G. Oliveira-Neto, L. G. Rezende Rodrigues and M. Silva de Oliveira, Int. J. Mod. Phys. D 26, 1750022 (2016)

  32. M. Sabido, C. Yee-Romero, Phys. Lett. B 757, 57 (2016)

    Article  ADS  Google Scholar 

  33. G. Oliveira-Neto, A.R. Vaz, Eur. Phys. J. Plus 132, 131 (2017)

    Article  Google Scholar 

  34. J. Sadeghi, B. Pourhassan, Z. Nekouee, M. Shokri, Int. J. Mod. Phys. D 27, 1850025 (2018)

    Article  ADS  Google Scholar 

  35. Konstantinos Dimopoulos, Introduction to Cosmic Inflation and Dark Energy (CRC Press, Boca Raton, 2021)

    Google Scholar 

  36. S.M.M. Rasouli, N. Saba, M. Farhoudi, J. Marto, P.V. Moniz, Ann. of Phys. 393, 288 (2018)

    Article  ADS  Google Scholar 

  37. N. Saba, M. Farhoudi, Ann. of Phys. 395, 1 (2018)

    Article  ADS  Google Scholar 

  38. P. Das, S. Ghosh, Phys. Rev. D 98 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Krishna Mitra, R. Banerjeea and S. Ghosh, JCAP 10, 57 (2018)

  40. H. Garcia-Compean, O. Obregon, C. Ramirez, Phys. Rev. Lett. 88 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. G.D. Barbosa, N. Pinto-Neto, Phys. Rev. D 70 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  42. G.D. Barbosa, Phys. Rev. D 71 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  43. W. Guzmán, M. Sabido, J. Socorro, Phys. Rev. D 76 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Oliveira-Neto, M. Silva de Oliveira, G. A. Monerat and E. V. Corrêa Silva, Int. J. Mod. Phys. D 26, 1750011 (2016)

  45. B.F. Schutz, Phys. Rev. D 2, 2762 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  46. B.F. Schutz, Phys. Rev. D 4, 3559 (1971)

    Article  ADS  Google Scholar 

  47. R. Arnowitt, S. Deser and C. W. Misner, in Gravitation: an introduction to current research, ed. L. Witten (Wiley, New York, 1962), Chapter 7, pp 227-264 and arXiv:gr-qc/0405109

  48. F.G. Alvarenga, J.C. Fabris, N.A. Lemos, G.A. Monerat, Gen. Rel. Grav. 34, 651 (2002)

    Article  Google Scholar 

  49. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman and Company, New York, 1973)

    Google Scholar 

  50. V.G. Lapchinskii, V.A. Rubakov, Theor. Math. Phys. 33, 1076 (1977)

    Article  Google Scholar 

  51. D. Bigatti, L. Susskind, Phys. Rev. D 62 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  52. L. Mezincescu, Star Product in Quantum Mechanics, hep-th/0007046

  53. B. Morariu, A.P. Polychronakos, Nucl. Phys. B 610, 531 (2001)

    Article  ADS  Google Scholar 

  54. T. Curtright, D. Fairlie, C. Zachos, Phys. Rev. D 58 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  55. C. Zachos, J. Math. Phys. 41, 5129 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  56. J. Gamboa, M. Loewe, J.C. Rojas, Phys. Rev. D 64 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Kokado, T. Okamura, T. Saito, Phys. Rev. D 69 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  58. L. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 169 (1988)

    Article  ADS  Google Scholar 

  59. J. Barcelos-Neto, C. Wotzasek, Mod. Phys. Lett. A 7, 1737 (1992)

    Article  ADS  Google Scholar 

  60. J. Barcelos-Neto, C. Wotzasek, Int. J. Mod. Phys. A 7, 49 (1992)

    Article  Google Scholar 

  61. E.M.C. Abreu, M.V. Marcial, A.C.R. Mendes, W. Oliveira, G. Oliveira-Neto, JHEP 05, 144 (2012)

    Article  ADS  Google Scholar 

  62. E. M. C. Abreu, A. C. R. Mendes, G. Oliveira-Neto, J. Ananias Neto, L. G. Rezende Rodrigues and M. Silva de Oliveira, Gen. Relativ. Gravit. 51, p. 95 (2019)

  63. G. Oliveira-Neto and L. G. Rezende Rodrigues, Int. J. Mod. Phys. A 34, 1950206 (2019)

  64. R.A. Liddle, An Introduction to Modern Cosmology (Wiley, Chichester U.K., 2003)

    Google Scholar 

  65. N. Gnedin, Cosmological Calculator for the Flat Universe, https://home.fnal.gov/~gnedin/ (FERMILAB, USA)

Download references

Acknowledgements

This study was financed in part by Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Oliveira-Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira-Neto, G., Marcon, L.F. Complete noncommutativity in a cosmological model with radiation. Eur. Phys. J. Plus 136, 584 (2021). https://doi.org/10.1140/epjp/s13360-021-01587-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01587-6

Navigation