Skip to main content
Log in

Hybrid surface waves in chiral loaded resistive metasurfaces

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A theoretical investigation has been carried out on the propagation of hybrid surface waves supported by a chiral loaded resistive metasurface. The canonical boundary-value problem approach is used in the analytical modeling of this problem. To simulate the resistive metasurface, an impedance boundary condition is applied at the chiral-resistive metasurface interface. The characteristics equation was solved numerically in the kernel for computing the unknown value of the propagation constant (\(\beta \)) against its respective frequency (\(\omega \)). The numerical results reveal that the chiral loaded resistive metasurface supports the upper and lower hybrid surface modes in the GHz range. The propagation bandgap between the upper and lower hybrid surface modes is highly sensitive to the chiral strength (ξ), and the propagation bandgap can be tuned with the variation of chirality. The surface wave characteristics i.e., the dispersion curve, effective mode index (\({N}_{\mathrm{eff}}\)), field profiles, and phase speeds (\({v}_{p}\)), have been computed numerically for both the upper and lower hybrid surface modes. The influence of chirality (ξ), thickness (\(t\)), permittivity of chiral medium (\({\varepsilon }_{c}\)), and the permittivity of resistive metasurface (\({\varepsilon }_{r}\)) on the resonance frequency, confinement, and phase speed of surface waves have been analyzed and their tunability has been discussed. The results’ validity has been checked under special conditions and the numerical results converge to the published results. The presented numerical results may have potential applications in chip chiral sensing, enantiomeric detection, biochemical sensing, metasurface designing, and near-field hybrid surface communication devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the mathematical equations and numerical results computed during this study are included in this published article]

References

  1. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).

    Book  Google Scholar 

  2. V.G. Achanta, Surface waves at metal-dielectric interfaces: Material science perspective. Rev. Phys. 5, 100041 (2020)

    Article  Google Scholar 

  3. L. La Spada, S. Haq, Y. Hao, Modeling and design for electromagnetic surface wave devices. Radio Sci. 52(9), 1049–1057 (2017)

    Article  ADS  Google Scholar 

  4. J. Polo, T. Mackay, A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Newnes, Amsterdam (Netherland), 2013)

    Google Scholar 

  5. M. Zhang, G. Qing, T. Sun, Chiral biointerface materials. Chem. Soc. Rev. 41(5), 1972–1984 (2012)

    Article  Google Scholar 

  6. E. Zor, H. Bingol, M. Ersoz, Chiral sensors. TrAC, Trends Anal. Chem. 121, 115662 (2019)

    Article  Google Scholar 

  7. G. Mi, V. Van, Characteristics of surface plasmon polaritons at a chiral–metal interface. Opt. Lett. 39(7), 2028–2031 (2014)

    Article  ADS  Google Scholar 

  8. Q. Zhang, J. Li, Characteristics of surface plasmon polaritons in a dielectrically chiral-metal-chiral waveguiding structure. Opt. Lett. 41(14), 3241–3244 (2016)

    Article  ADS  Google Scholar 

  9. M.Z. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, F. Razzaz, Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) Structure. Sci. Rep. 8(1), 1–9 (2018)

    Article  Google Scholar 

  10. M.Z. Yaqoob, A. Ghaffar, M. Alkanhal, S.U. Rehman, Characteristics of light–plasmon coupling on chiral–graphene interface. JOSA B 36(1), 90–95 (2019)

    Article  ADS  Google Scholar 

  11. J. Noonan, T.G. Mackay, On electromagnetic surface waves supported by an isotropic chiral material. Opt. Commun. 434, 224–229 (2019)

    Article  ADS  Google Scholar 

  12. M. Naheed, M. Faryad, T.G. Mackay, Electromagnetic surface waves guided by the planar interface of isotropic chiral materials. JOSA B 36(8), F1–F8 (2019)

    Article  Google Scholar 

  13. M. Naheed, M. Faryad, Excitation of surface plasmon–polariton waves at the interface of a metal and an isotropic chiral material in the prism-coupled configurations. Eur. Phys. J. Plus 135(9), 1–15 (2020)

    Article  Google Scholar 

  14. M. Umair, A. Ghaffar, M.A. Alkanhal, M.Y. Naz, A.H. Alqahtani, Y. Khan, Dispersion characteristics of hybrid surface waves at chiral-plasma interface. J. Electromagn. Waves Appl. 35(2), 150–162 (2021)

    Article  Google Scholar 

  15. S.S. Bukhari, J.Y. Vardaxoglou, W. Whittow, A metasurfaces review: definitions and applications. Appl. Sci. 9(13), 2727 (2019)

    Article  Google Scholar 

  16. H.T. Chen, A.J. Taylor, N. Yu, A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79(7), 076401 (2016)

    Article  ADS  Google Scholar 

  17. V.C. Su, C.H. Chu, G. Sun, D.P. Tsai, Advances in optical metasurfaces: fabrication and applications. Opt. Express 26(10), 13148–13182 (2018)

    Article  ADS  Google Scholar 

  18. F.G. Meng, H. Li, D.G. Fan, F.F. Li, F.Z. Xue, P. Chen, R.X. Wu, Transmitting-absorbing material based on resistive metasurface. AIP Adv. 8(7), 075008 (2018)

    Article  ADS  Google Scholar 

  19. B.O. Zhu, J. Zhao, Y. Feng, Active impedance metasurface with full 360 reflection phase tuning. Sci. Rep. 3(1), 1–6 (2013)

    Google Scholar 

  20. F. Ding, A. Pors, S.I. Bozhevolnyi, Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys. 81(2), 026401 (2017)

    Article  ADS  Google Scholar 

  21. A. Shaltout, V. Shalaev, A. Kildishev, Homogenization of bi-anisotropic metasurfaces. Opt. Express 21(19), 21941–21950 (2013)

    Article  ADS  Google Scholar 

  22. F. Walter, G. Li, C. Meier, S. Zhang, T. Zentgraf, Ultrathin nonlinear metasurface for optical image encoding. Nano Lett. 17(5), 3171–3175 (2017)

    Article  ADS  Google Scholar 

  23. H. Jeong, D.H. Le, D. Lim, R. Phon, S. Lim, Reconfigurable metasurfaces for frequency selective absorption. Adv. Opt. Mater. 8(13), 1902182 (2020)

    Article  Google Scholar 

  24. S.M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, A. Faraon, Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev. 10(6), 1002–1008 (2016)

    Article  ADS  Google Scholar 

  25. C. Pfeiffer, A. Grbic, Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110(19), 197401 (2013)

    Article  ADS  Google Scholar 

  26. S.N. Tcvetkova, S. Maci, S.A. Tretyakov, Exact solution for conversion of surface waves to space waves by periodical impenetrable metasurfaces. IEEE Trans. Antennas Propag. 67(5), 3200–3207 (2019)

    Article  ADS  Google Scholar 

  27. M.Z. Yaqoob, A. Ghaffar, M.A. Alkanhal, M.Y. Naz, A.H. Alqahtani, Y. Khan, Electromagnetic surface waves supported by a resistive metasurface-covered metamaterial structure. Sci. Rep. 10(1), 1–17 (2020)

    Article  Google Scholar 

  28. D.J. Hoppe, Impedance Boundary Conditions in Electromagnetics (CRC Press, 2018).

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research (DSR) at King Saud University, Riyadh, Saudi Arabia, for their financial support through the Research Group Project No. RG-1436-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghaffar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaqoob, M.Z., Ghaffar, A., Alkanhal, M.A.S. et al. Hybrid surface waves in chiral loaded resistive metasurfaces. Eur. Phys. J. Plus 136, 666 (2021). https://doi.org/10.1140/epjp/s13360-021-01574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01574-x

Navigation