Skip to main content
Log in

Homotopy perturbation and Adomian decomposition methods for modeling the nonplanar structures in a bi-ion ionospheric superthermal plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The propagation of cylindrical and spherical (nonplanar) electrostatic ion-acoustic waves (IAWs) in a collisionless, unmagnetized, and homogeneous plasma consisting of hot and cold positive ions as well as superthermal electrons are numerically investigated. The nonplanar Korteweg–de Vries (nKdV) equation is deduced from the fluid equations of the plasma species by employing the reductive perturbation technique. For studying the characteristics of the nonplanar electrostatic IAWs, both homotopy perturbation method (HPM) and Adomian decomposition method (ADM) are devoted for solving the nKdV equation numerically. For checking the accuracy of the obtained solutions, a comparison between the exact analytical solution and the approximate numerical solutions of the integrable case (planar KdV equation) is carried out. Moreover, the absolute error and both minimum and maximum residual errors of both ADM and HPM are estimated. Also, the effect of the physical plasma parameters on the characteristics of (non)planar soliton profiles is investigated. It is found that IAWs are significantly modified due to the presence of excess superthermal electrons and nonplanar geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.R. Mackenzie, R.J. Taylor, Bull. Am. Phys. 15, 1409 (1970)

    Google Scholar 

  2. B.D. Fried, R.B. White, T.K. Samec, Phys. Fluid. 14, 2388 (1971)

    Article  ADS  Google Scholar 

  3. M.Q. Tran, S. Coquerand, Helv. Phys. Acta 48, 488 (1975)

    Google Scholar 

  4. M.Q. Tran, S. Coquerand, Phys. Rev. A 14, 2301 (1976)

    Article  ADS  Google Scholar 

  5. M. Nakamura, M. Ito, Y. Nakamura, T. Itoh, Phys. Fluids 18, 651 (1975)

    Article  ADS  Google Scholar 

  6. Y. Nakamura, M. Nakamura, T. Itoh, Phys. Rev. Lett. 37, 209 (1976)

    Article  ADS  Google Scholar 

  7. I.M.A. Gledhill, M.A. Hellberg, J. Plasma Phys. 36, 75 (1986)

    Article  ADS  Google Scholar 

  8. H.X. Vu, J.M. Wallace, B. Bezzerides, Phys. Plasmas 1, 3542 (1994)

    Article  ADS  Google Scholar 

  9. S.H. Glenzer, C.A. Back, K.G. Estabrook, R. Wallace, K. Baker, B.J. MacGowan, B.A. Hammel, R.E. Cid, J.S. De Groot, Phys. Rev. Lett. 77, 1496 (1996)

    Article  ADS  Google Scholar 

  10. M.V. Kozlov, C.J. McKinstrie, Phys. Plasmas 9, 3783 (2002)

    Article  ADS  Google Scholar 

  11. Y. Nakamura, Y. Saitou, P. Phys, Control. Fusion 45, 759 (2003)

    Article  Google Scholar 

  12. S. Mahmood, H. Saleem, J. Geophys. Res. 110, A09306 (2005)

    Article  ADS  Google Scholar 

  13. S. A. Almutlak, S.A. El-Tantawy, S.A. Shan, S.M.E. Ismaeel, Eur. Phys. J. Plus 134 513 (2019)

  14. V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)

    Article  ADS  Google Scholar 

  15. M.P. Leubner, J. Geophys. Res. 87, 6335 (1982)

    Article  ADS  Google Scholar 

  16. W.C. Feldman, R.C. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen, G. Paschmann, M.M. Hoppe, J. Geophys. Res. 88, 96 (1983)

    Article  ADS  Google Scholar 

  17. M. Maksimovic, V. Pierrard, J.F. Lemaire, Astron. Astrophys. 324, 725 (1997)

    ADS  Google Scholar 

  18. P.H. Yoon, T. Rhee, C.-M. Ryu, Phys. Rev. Lett. 95, 215003 (2005)

    Article  ADS  Google Scholar 

  19. S. Magni, H.E. Roman, R. Barni, C. Riccardi, T. Pierre, D. Guyomarc’h, Phys. Rev. E 72, 026403 (2005)

  20. G. Sarri, M.E. Dieckmann, C.R.D. Brown, C.A. Cecchetti, D.J. Hoarty, S.F. James, R. Jung, I. Kourakis, H. Schamel, O. Willi, M. Borghesi, Phys. Plasmas 17, 010701 (2010)

    Article  ADS  Google Scholar 

  21. M.A. Hellberg, R.L. Mace, R.J. Armstrong, G. Karlstad, J. Plasma Phys. 64, 433 (2000)

    Article  ADS  Google Scholar 

  22. P. Schippers, M. Blanc, N. André, I. Dandouras, G.R. Lewis, L.K. Gilbert, A.M. Persoon, N. Krupp, D.A. Gurnett, A.J. Coates, S.M. Krimigis, D.T. Young, M.K. Dougherty, J. Geophys. Res. 113, A07208 (2008)

    Article  ADS  Google Scholar 

  23. D. Summers, R.M. Thorne, Phys. Fluids B 3, 1835 (1991)

    Article  ADS  Google Scholar 

  24. T.K. Baluku, M.A. Hellberg, Phys. Plasmas 15, 123705 (2008)

    Article  ADS  Google Scholar 

  25. N.S. Saini, I. Kourakis, M.A. Hellberg, Phys. Plasmas 16, 062903 (2009)

    Article  ADS  Google Scholar 

  26. R.L. Mace, M.A. Hellberg, R.A. Treumann, J. Plasma Phys. 59, 393 (1998)

    Article  ADS  Google Scholar 

  27. C.M.D. Summers, Geophys. Res. Lett. 25, 4099 (1998)

    Article  ADS  Google Scholar 

  28. N. Jehan, A.M. Mirza, M. Salahuddin, Phys. Plasmas 18, 052307 (2011)

    Article  ADS  Google Scholar 

  29. B. Sahu, Phys. Plasmas 18, 062308 (2011)

    Article  ADS  Google Scholar 

  30. B. Sahu, M. Tribeche, Phys. Plasmas 19, 022304 (2012)

    Article  ADS  Google Scholar 

  31. S. Maxon, J. Viecelli, Phys. Fluids 17, 1614 (1974)

    Article  ADS  Google Scholar 

  32. S. Maxon, J. Viecelli, Phys. Rev. Lett. 32, 4 (1974)

    Article  ADS  Google Scholar 

  33. S. Maxon, Phys. Fluids 19, 266 (1976)

    Article  ADS  Google Scholar 

  34. S.A. Almutalk, S.A. El-Tantawy, E.I. El-Awady, S.K. El-Labany, Phys. Lett. A 383, 1937 (2019)

    Article  ADS  Google Scholar 

  35. S.A. El-Tantawy, P. Carbonaro, Phys. Lett. A 380, 1627 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. S.A. El-Tantawy, T. Aboelenen, S.M.E. Ismaeel, Phys. Plasmas 26, 022115 (2019)

    Article  ADS  Google Scholar 

  37. S.A. Almutlak, S.A. El-Tantawy, Results Phys. 23, 104034 (2021)

    Article  Google Scholar 

  38. S.A. El-Tantawy, A. H. Salas, M. R. Alharthi, Phys. Fluids 33, 043106 (2021)

  39. R. Hirota, Phys. Letts. A. 71, 393 (1979)

    Article  ADS  Google Scholar 

  40. R. Fedele, S. De Nicola, D. Grecu, P.K. Shukla, A. Visinescu, AIP Conf. Proc. 1061, 273 (2008)

    Article  ADS  Google Scholar 

  41. S.K. Ghosh, S.K. Gupta, P. Chatterjee, Phys. Scr. 90, 125601 (2015)

    Article  ADS  Google Scholar 

  42. U.N. Ghosh, D.K. Ghosh, P. Chatterjee, M. Bacha, M. Tribeche, Astrophys. Space Sci. 343, 265 (2013)

    Article  ADS  Google Scholar 

  43. P. Eslami, M. Mottaghizadeh, Hamid Reza Pakzad. Phys. Plasmas 18, 072305 (2011)

    Article  ADS  Google Scholar 

  44. A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  45. X. Lü, W.-X. Ma, C. MasoodKhalique, Appl. Math. Lett. 50, 37 (2015)

    Article  MathSciNet  Google Scholar 

  46. A.H. Salas, S.A. El-Tantawy, Eur. Phys. J. Plus 135, 833 (2020)

    Article  Google Scholar 

  47. I. Ji-HuanHe, J. NonLinear Mech. 35, 37 (2000)

    Article  Google Scholar 

  48. G. Adomian, Appl. Math. Comput. 88, 131 (1997)

    MathSciNet  Google Scholar 

  49. G. Adomian, J. Math. Anal. Appl 135, 501 (1988)

    Article  MathSciNet  Google Scholar 

  50. A.M. Wazwaz, Appl. Math. Comput. 161, 543 (2005)

    MathSciNet  Google Scholar 

  51. A.M. Wazwaz, Appl. Math. Comput. 105, 11 (1999)

    MathSciNet  Google Scholar 

  52. G. Adomian, R. Rach, Math. Comput. Modelling 24, 39 (1996)

    Article  MathSciNet  Google Scholar 

  53. R. Rach, G. Adomian, R.E. Meyers, Comput. Math. Appl. 23, 17 (1992)

    Article  MathSciNet  Google Scholar 

  54. N.H. Aljahdaly, S.A. El-Tantawy, Chaos 30, 053117 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  55. D. Sharma, S. Kumar, Int. J. Nonlinear Sci. 15, 173 (2013)

    MathSciNet  Google Scholar 

  56. W. Bin, L. Sen-Yue, Commun. Theor. Phys. 38, 649 (2002)

    Article  ADS  Google Scholar 

  57. A.A. Mamun, P.K. Shukla, Phys. Plasmas 9, 1468 (2002)

    Article  ADS  Google Scholar 

  58. M. J. Iqbal, Y. Khan. Phys. Plasmas 24, 042506 (2017)

  59. Comput Ji-HuanHe, Methods. Appl. Mech. Eng. 178, 257 (1999)

  60. B. S. Kashkari, S.A. El-Tantawy, A. H Salas, L.S. El-Sherif, Chaos Solitons Fractals 130 (2020) 109457

  61. J.-E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, B. Cabrit, A.I. Eriksson, P.M. Kintner, M.C. Kelley, J. Bonnell, S. Chesney, Geophys. Res. Lett. 21, 1835 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-1441-439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. El-Tantawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Tantawy, S.A., Shan, S.A., Mustafa, N. et al. Homotopy perturbation and Adomian decomposition methods for modeling the nonplanar structures in a bi-ion ionospheric superthermal plasma. Eur. Phys. J. Plus 136, 561 (2021). https://doi.org/10.1140/epjp/s13360-021-01494-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01494-w

Navigation