Abstract
The 107Ag(n, 2n)106mAg reaction cross sections at the neutron energies of 10.50 ± 0.68, 13.52 ± 0.67, 16.86 ± 0.58 and 19.86 ± 0.59 MeV were measured by using the off-line γ-ray spectroscopy and activation analysis techniques. The 7Li(p, n) reaction was used to produce the high-energy quasi-monoenergetic neutrons with the proton beam from the 14UD BARC-TIFR Pelletron facilities at Mumbai, India. The neutron flux was monitored using the standard 27Al(n, α)24Na monitor reaction. The detailed uncertainties analysis in the measured cross sections was performed using the covariance analysis. The cross sections were also theoretically calculated using TALYS-1.9 code from 10 to 25 MeV energies. The measured cross-sections data are compared with the evaluated data from TENDL-2019, JENDL-4.0 and ENDF/B-VIII.0 libraries as well as with the existing experimental data available in EXFOR compilation. Our data show good agreement with some of the previous experimental data and with the theoretical values calculated with TALYS-1.9 code. Present work will provide better description of level density models and pre-equilibrium process.
This is a preview of subscription content, access via your institution.






Data Availability Statement
This manuscript has associated data in a data repository. [Authors’ comment: These data are new data and the data will be put in the EXFOR data library after publication.]
References
B.P. Bayhurst, J.S. Gilmore, R.J. Prestwood, et al., Cross sections for (n, xn) reactions between 7.5 and 28 MeV. Phys. Rev. C 12(2) (1975). https://doi.org/10.1103/PhysRevC.12.451
H.M. Agrawal, K. Kailash Pandey, Surendra Babu et al., Neutron activation cross-sections at (14.6 ± 0.3) MeV. Ann. Nucl. Energy 35, 1713–1719 (2008). https://doi.org/10.1016/j.anucene.2008.02.004
J. Luo, F. Tuo, X. Kong et al., Activation cross-section for reactions induced by 14 MeV neutrons on natural silver. Ann. Nucl. Energy 36, 718–722 (2009). https://doi.org/10.1016/j.anucene.2009.02.009
N. Fotiades, M. Devlin, R.O. Nelson et al., Feeding of Rh and Ag isomers in fast-neutron-induced reactions. Phys. Rev. C 94, 044608 (2016). https://doi.org/10.1103/PhysRevC.94.044608
Experimental Nuclear Reaction Data IAEA-EXFOR Database, https://www-nds.iaea.org/exfor/
D.A. Brown, M. Herman, A. Trkov et al., EDNF/B-VIII.0. Nucl. Data Sheets 148, 1–142 (2018). https://doi.org/10.1016/j.nds.2018.02.001
K. Shibata, N. Iwamoto, S. Kunieda, F. Minato, O. Iwamoto “JENDL/AD-2017” “Activation Cross-section File for Decommissioning of LWRs” JAEA-Conf 2016–004, pp.47–52. https://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-ad-2017.html
A.J. Koning, D. Rochman, M. Fleming et al., TENDL-2019. Nucl. Data Sheets 155, 1–55 (2019). https://doi.org/10.1016/j.nds.2019.01.002
A.J. Koning, S. Hilaire, M.C. Duijvestijn, in TALYS-1.0”, Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007, Nice, France, ed. O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray. EDP Sciences (2008), pp. 211–214. https://doi.org/10.1051/ndata:07767
J.F. Ziegler, Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms. Nucl. Instru. Methods B 219–220, 1027 (2004). https://doi.org/10.1016/j.nimb.2004.01.208
D. De Frenne, A. Negret, Nuclear data sheets for A. Nucl. Data Sheets 109, 943 (2008). https://doi.org/10.1016/j.nds.2008.03.002
C.H. Poppe, J.D. Anderson, J.C. Davis, S.M. Grimes, C. Wong, Cross sections for the 7Li(p,n)7Be reaction between 4.2 and 26 MeV. Phys. Rev. C 14, 438 (1976). https://doi.org/10.1103/PhysRevC.14.438
M.W. Mcnaughton, N.S.P. King, F.P. Brady et al., Measurements of 7Li(p,n) and 9Be(p,n) cross sections at 15, 20 and 30 MeV. Nuclear Instruments And Methods 130, 555–557 (1975). https://doi.org/10.1016/0029-554X(75)90057-9
Rajnikant Makwana, S. Mukherjee et al., Measurement of the cross section of the 186W(n, γ)187W, 182W(n, p)182Ta, 154Gd(n, 2n)153Gd, and 160Gd(n, 2n)159Gd reaction at neutron energies of 5 to 17 MeV. Phys. Rev. C 96, 024608 (2017). https://doi.org/10.1103/PhysRevC.96.024608
S. Siddharth Parashari, H. Mukherjee, Naik, et al. Measurement of the 58Ni(n, p)58Co and 58Ni(n, 2n)57Ni reaction cross-sections for fast neutron energies up to 18 MeV. Eur. Phys. J. A 55(4), 51 (2019). https://doi.org/10.1140/epja/i2019-12726-2.
E.M.Zsolnay, R. Capote, H.K. Nolthenius, and A. Trkov, Technical report INDC(NDS)-0616, IAEA, Vienna, 2012. https://www-nds.iaea.org/IRDFFv105/
Nowotny R (1998) XMuDat: photon attenuation data on PC. IAEA Report IAEA-NDS 195. https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm
D.L. Smith, A.J.M. Plompen, V. Semkova, Corrections for low energy neutrons by spectral indexing, OECD, NEA, International Evaluation Co-operation, Volume-19, NEA/WPEC-19,ISBN 92–64–01070-X, 2005. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/volume19.pdf
T. Vidmar, EFFTRAN—A Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res., Sect. A 550(3), 603–608 (2005). https://doi.org/10.1016/j.nima.2005.05.055
Jimin W, Xiaolong H, Nuclear data sheets for A=51. Nucl. Data Sheets 144, 1–296 (2017). https://doi.org/10.1016/j.nds.2017.08.002
R.B. Firestone, Nucl. Data Sheets 108, 2319 (2007). https://doi.org/10.1016/j.nds.2007.10.001
N. Otuka, B. Lalremruata, L.R.M. Punte et al., Uncertainty propagation in activation cross section measurements. Radiat. Phys. Chem. 140, 502–510 (2017). https://doi.org/10.1016/j.radphyschem.2017.01.013
A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446 (1965). https://doi.org/10.1139/p65-139
W. Dilg, W. Schantl, H. Vonach, M. Uhl, Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A 217, 269 (1973). https://doi.org/10.1016/0375-9474(73)90196-6
A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Collective effects in level density, and the probability of fission. Sov. J. Nucl. Phys. 29, 450 (1979). https://www.osti.gov/biblio/5176754
A.V. Ignatyuk, J.L. Weil, S. Raman, S. Kahane, Density of discrete levels in 116Sn. Phys. Rev. C 47, 1504 (1993). https://doi.org/10.1103/PhysRevC.47.1504
S. Goriely, S. Hilaire, A.J. Koning, Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Phys. Rev. C 78, 064307 (2008). https://doi.org/10.1103/PhysRevC.78.064307
S. Hilaire, M. Girod, S. Goriely, A.J. Koning, Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012). https://doi.org/10.1103/PhysRevC.86.064317
Acknowledgement
The authors are thankful to staff of BARC-TIFR Pelletron accelerator facility for their support and help during the experiment. Special thanks to Mr. Rohan from BARC-TIFR target laboratory for preparing Li and Ta targets for the experiment. One of the authors (Rakesh Chauhan) is thankful to The Maharaja Sayajirao University of Baroda for providing financial support through minor research project. One of the authors (RKS) is thankful for financial assistance from the IUAC New Delhi through a research project.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chauhan, R., Singh, R.K., Singh, N.L. et al. Study of (n, 2n) reaction cross sections for 107Ag within the energy range of 9–22 MeV. Eur. Phys. J. Plus 136, 532 (2021). https://doi.org/10.1140/epjp/s13360-021-01449-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-021-01449-1