Skip to main content
Log in

Irreversibility analysis of the convective flow through corrugated channels: a comprehensive review

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article presents recent developments in flow configurations with built-in corrugated structures at the walls of the channels towards the improvement of convective transport of heat and a simultaneous reduction in thermodynamic irreversibility. The comprehensive reviews of the works related to entropy generation and heat transfer in the corrugated channels with and without the use of nanofluid are provided. Several aspects of different numerical, analytical, and experimental studies focusing on the underlying heat transfer and its consequences on the entropy generation using both nanofluids and conventional fluids are discussed. Also, a brief discussion on the entropy generation associated with the convective transport of heat in the corrugated microchannels, including the effect of corrugation configurations and nanofluids on the development of thermodynamic irreversibility is presented. The effects of different types of nanoparticles such as metallic, non-metallic, metal oxides, etc., have been discussed along with water, ethylene glycol, etc., as base fluids on the underlying thermo-hydrodynamics are discussed. We believe that this review article will provide a basis for the advanced research on the irreversibility analysis of the nanofluid in corrugated microchannels to improve the performance of the system involving the application of corrugated channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

CC:

Corrugated channel

CMC:

Corrugated microchannel

CWHF:

Constant wall heat flux

CWT:

Constant wall temperature

EG:

Entropy generation

EGM:

Entropy generation minimization

HF:

Heat flux (W/m2)

HT:

Heat transfer

MC:

Microchannel

MCHS:

Microchannel heat sink

NF:

Nanofluid

TEG:

Total entropy generation

TP:

Thermal performance

\({S}^{{{\prime\prime\prime}}}\) :

Volumetric entropy generation rate (W/m3 K)

\({S}_{\rm gen,FR}\) :

Friction entropy generation rate (W/K)

\({S}_{\rm gen,HT}\) :

Heat transfer entropy generation rate (W/K)

\({S}_{\rm gen}\) :

Entropy generation rate (W/K)

\({q}_{\rm w}^{{{\prime\prime}}}\) :

Wall heat flux (W/m2)

a :

Corrugation amplitude (m)

C p :

Specific heat (J/kg K)

D h :

Characteristic dimension or hydraulic diameter of the channel (m)

d p :

Nanoparticle diameter (nm)

H :

Channel height (m)

h :

Convective heat transfer coefficient (W/m2 K)

k :

Thermal conductivity (W/m K)

l :

Total corrugation length (m)

L :

Total length of the channel (m)

L i :

Entrance length of the channel (m)

L o :

Exit length of the channel (m)

l w :

Corrugation wavelength (m)

N :

Number of channels/tubes/microchannels

q :

Heat transfer (W)

R Th, Cond :

Thermal resistance due to conduction

R Th, Conv :

Thermal resistance due to convection

S n :

Entropy generation number

T f :

Fluid temperature (K)

T s :

Surface temperature (K)

W :

Channel width (m)

ΔP :

Pressure drop (kPa)

Nu:

Nusselt number

Kn:

Knudsen number

Re:

Reynolds number

Ag:

Silver

Al2O3 :

Alumina

Cu:

Copper

CuO:

Copper oxide

Fe3O4 :

Iron oxide black

H2O:

Water

SiO2 :

Silicon dioxide

TiO2 :

Titanium oxide

µ :

Dynamic viscosity (N s/m2)

ρ :

Density (kg/m3)

ϕ :

Particle concentration/volume fraction

References

  1. C. Maradiya, J. Vadher, R. Agarwal, Beni-Suef University J. Basic Appl. Sci. 7(1), 1–21 (2018)

    Article  Google Scholar 

  2. A. Bejan, A.D. Kraus, Heat Transfer Handbook 1 (Wiley, 2003).

  3. M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, Renew. Sustain. Energy Rev. 49, 444–469 (2015)

    Article  Google Scholar 

  4. A. Bergles, ASME J. Heat Transf. 119(1), 8–19 (1997)

    Article  Google Scholar 

  5. A.E. Bergles, in Handbook of Heat Transfer ed. By W.M. Rohsenow, J.P. Hartnett, Y.I. Cho (McGraw-Hill, 1998), p. 11

  6. A.E. Bergles, P.C.Jr. Wayner, Heat Transfer Enhancement (AccessScience. McGraw-Hill Education, 2002)

  7. M. Bezaatpour, M. Goharkhah, Appl. Therm. Eng. 167, 114801 (2020)

    Article  Google Scholar 

  8. T. Alam, M.H. Kim, Renew. Sustain. Energy Rev. 81, 813–839 (2018)

    Article  Google Scholar 

  9. M.G. Varun, H. Nautiyal, S. Khurana, M.K. Shukla, Renew. Sustain. Energy Rev. 63, 193–225 (2016)

    Article  Google Scholar 

  10. S.K. Agarwal, M.R. Rao, Int. J. Heat Mass Transf. 39(17), 3547–3557 (1996)

    Article  Google Scholar 

  11. P. Sivashanmugam, S. Suresh, Appl. Therm. Eng. 26(16), 1990–1997 (2006)

    Article  Google Scholar 

  12. H. Bucak, F. Yilmaz, Chemical Engineering and Processing-Process Intensification, 107929 (2020).

  13. N. Kurtulmuş, B. Sahin, Int. Commun. Heat Mass Transfer 108, 104307 (2019)

    Article  Google Scholar 

  14. A. Kumar, M.H. Kim, Appl. Therm. Eng. 89, 239–261 (2015)

    Article  Google Scholar 

  15. I.A. Ghani, N.A.C. Sidik, N. Kamaruzaman, Int. J. Heat Mass Transf. 107, 21–44 (2017)

    Article  Google Scholar 

  16. K. Kumar, R. Kumar, R.S. Bharj, Int. J. Exergy 31(1), 49–86 (2020)

    Article  Google Scholar 

  17. D.B. Tuckerman, R.F.W. Pease, IEEE Electron Device Lett. 2(5), 126–129 (1981)

    Article  ADS  Google Scholar 

  18. N.P. Gulhane, S.P. Mahulikar, Int. J. Heat Mass Transf. 52(7–8), 1980–1990 (2009)

    Article  Google Scholar 

  19. S.P. Mahulikar, H. Herwig, O. Hausner, J. Microelectromech. Syst. 16(6), 1543–1556 (2007)

    Article  Google Scholar 

  20. G.L. Morini, Heat Transfer Eng. 27(4), 64–73 (2006)

    Article  ADS  Google Scholar 

  21. N.P. Gulhane, S.P. Mahulikar, Int. J. Therm. Sci. 49(5), 786–796 (2010)

    Article  Google Scholar 

  22. R. Kumar, S.P. Mahulikar, Heat Transfer Asian Res 46(7), 1029–1040 (2017)

    Article  Google Scholar 

  23. N.P. Gulhane, S.P. Mahulikar, Heat Transfer Eng. 33(8), 748–761 (2012)

    Article  ADS  Google Scholar 

  24. P. Rosa, T.G. Karayiannis, M.W. Collins, Appl. Therm. Eng. 29(17–18), 3447–3468 (2009)

    Article  Google Scholar 

  25. M.I. Hasan, H.M. Hasan, G.A. Abid, J King Saud Univ Eng Sci 26(2), 122–131 (2014)

    Google Scholar 

  26. M. Gal-el-Hak, ASME J Fluids Eng 121(1), 5–33 (1999)

    Article  Google Scholar 

  27. M. Gad-el-Hak, ed., The MEMS Handbook (CRC Press 2001).

  28. H. Heidary, M.J. Kermani, Int. Commun. Heat Mass Transfer 37(10), 1520–1527 (2010)

    Article  Google Scholar 

  29. A. Bejan, Energy 5(8–9), 720–732 (1980)

    Article  ADS  Google Scholar 

  30. M.A. Rosen, Int. J. Exergy 5(3), 249–274 (2008)

    Article  Google Scholar 

  31. S.G. Kandlikar, W.J. Grande, Heat Transfer Eng. 24(1), 3–17 (2003)

    Article  ADS  Google Scholar 

  32. G.V. Wang, S.P. Vanka, Int. J. Heat Mass Transf. 38(17), 3219–3230 (1995)

    Article  Google Scholar 

  33. S.K. Mehta, S. Pati, J. Therm. Anal. Calorim. 136(1), 49–62 (2019)

    Article  Google Scholar 

  34. G. Gaiser, V. Kottke, Phys. Fluids A 3, 1465–1465 (1991)

    Article  ADS  Google Scholar 

  35. M.A. Ahmed, M.Z. Yusoff, K.C. Ng, N.H. Shuaib, Case Studies Thermal Eng 4, 65–75 (2014)

    Article  Google Scholar 

  36. H.M. Bahaidarah, Numer Heat Transfer A Appl 51(9), 877–898 (2007)

    Article  ADS  Google Scholar 

  37. Y. Islamoglu, Int. Commun. Heat Mass Transfer 35(5), 643–647 (2008)

    Article  Google Scholar 

  38. P. Naphon, Int. Commun. Heat Mass Transfer 36(9), 942–946 (2009)

    Article  Google Scholar 

  39. H. Pehlivan, I. Taymaz, Y. İslamoğlu, Int. Commun. Heat Mass Transfer 46, 106–111 (2013)

    Article  Google Scholar 

  40. M.A. Ahmed, M.Z. Yusoff, K.C. Ng, N.H. Shuaib, Case Stud Thermal Eng 6, 77–92 (2015)

    Article  Google Scholar 

  41. N. Tokgoz, B. Sahin, Int. Commun. Heat Mass Transfer 104, 41–50 (2019)

    Article  Google Scholar 

  42. P. Dutta, P.P. Dutta, P. Kalita, Thermohydraulic Investigation of Different Channel Height on a Corrugated Heat Exchanger, in AIP Conference Proceedings, 2091(1), 020011 (2019).

  43. R. Ferhat, A.Z. Dellil, K. Boualem, M. Hamidou, J. Heat Transfer, 141(8), (2019).

  44. M. Salami, M. Khoshvaght-Aliabadi, A. Feizabadi, J. Therm. Anal. Calorim. 138(5), 3159–3174 (2019)

    Article  Google Scholar 

  45. R.K. Ajeel, W.I. Salim, K. Sopian, M.Z. Yusoff, K. Hasnan, A. Ibrahim, A.H. Al-Waeli, Int. J. Heat Mass Transf. 145, 118806 (2019)

    Article  Google Scholar 

  46. S. Singh, A. Singh, S. Chander, J. Energy Storage 25, 100896 (2019)

    Article  Google Scholar 

  47. N. Kurtulmuş, B. Sahin, Int. J. Mech. Sci. 167, 105268 (2020)

    Article  Google Scholar 

  48. S.U. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, (No. ANL/MSD/CP-84938; CONF-951135–29), (Argonne National Lab., IL, United States 1995).

  49. M.Z.A. Qureshi, M. Ashraf, Eur. Phys. J. Plus 133(2), 1–22 (2018)

    Article  Google Scholar 

  50. S.K. Das, S.U. Choi, W. Yu, T. Pradeep, ed., Nanofluids: Science and Technology (Wiley, 2007).

  51. S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transf. 52(13–14), 3187–3196 (2009)

    Article  Google Scholar 

  52. J. Wu, J. Zhao, J. Lei, B. Liu, Appl. Therm. Eng. 101, 402–412 (2016)

    Article  Google Scholar 

  53. S. Ahmad, M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Colloids Surf. A 554, 197–210 (2018)

    Article  Google Scholar 

  54. R. Nasrin, N.A. Rahim, H. Fayaz, M. Hasanuzzaman, Renew Energy 121, 286–300 (2018)

    Article  Google Scholar 

  55. A. Kumar, S. Subudhi, Appl. Therm. Eng. 160, 114092 (2019)

    Article  Google Scholar 

  56. D. Dey, P. Kumar, S. Samantaray, Heat Transfer Asian Res. 46(8), 1413–1442 (2017)

    Article  Google Scholar 

  57. A. Ghadimi, R. Saidur, H.S.C. Metselaar, Int. J. Heat Mass Transf. 54(17–18), 4051–4068 (2011)

    Article  Google Scholar 

  58. N.A.C. Sidik, H.A. Mohammed, O.A. Alawi, S. Samion, Int. Commun. Heat Mass Transfer 54, 115–125 (2014)

    Article  Google Scholar 

  59. D. Wen, G. Lin, S. Vafaei, K. Zhang, Particuology 7(2), 141–150 (2009)

    Article  Google Scholar 

  60. R.B. Ganvir, P.V. Walke, V.M. Kriplani, Renew. Sustain. Energy Rev. 75, 451–460 (2017)

    Article  Google Scholar 

  61. M. Jama, T. Singh, S.M. Gamaleldin, M. Koc, A. Samara, R.J. Isaifan, M.A. Atieh, J. Nanomater. 2016, 22 (2016)

    Article  Google Scholar 

  62. H. Babar, H.M. Ali, Energy Convers. Manag. 202, 112194 (2019)

    Article  Google Scholar 

  63. L. Yang, W. Ji, M. Mao, J.N. Huang, J. Clean. Prod. 257, 120408 (2020)

    Article  Google Scholar 

  64. S.M.G. Babita, S.K. Sharma, S.M. Gupta, Exp. Thermal Fluid Sci. 79, 202–212 (2016)

    Article  Google Scholar 

  65. W. Yu, H. Xie, J. Nanomater. 2012, 17 (2012)

    Google Scholar 

  66. B. Bakthavatchalam, K. Habib, R. Saidur, B.B. Saha, K. Irshad, J. Mol. Liquids, 112787 (2020).

  67. N. Arora, M. Gupta, Renew. Sustain. Energy Rev. 134, 110242 (2020)

    Article  Google Scholar 

  68. Y. Li, S. Tung, E. Schneider, S. Xi, Powder Technol. 196(2), 89–101 (2009)

    Article  Google Scholar 

  69. S. Chakraborty, P.K. Panigrahi, Appl. Thermal Eng., 115259 (2020).

  70. A. Bejan, Entropy Generation through Heat and Fluid Flow (Wiley, New York, 1982).

    Google Scholar 

  71. M. Vasudevaiah, K. Balamurugan, Int. J. Therm. Sci. 40(5), 454–468 (2001)

    Article  Google Scholar 

  72. Y. Sui, C.J. Teo, P.S. Lee, Y.T. Chew, C. Shu, An efficient wavy microchannel heat sink for electronic devices. Heat Transfer Summer Conference 43567, 719–725 (2009)

    Google Scholar 

  73. L. Gong, K. Kota, W. Tao, Y. Joshi, Parametric numerical study of flow and heat transfer in microchannels with wavy walls. ASME-Int. Mech. Eng. Cong. Expos. 44441, 1365–1373 (2010)

    Google Scholar 

  74. A. Husain, K.Y. Kim, Heat Mass Transf. 47(1), 93–105 (2011)

    Article  ADS  Google Scholar 

  75. H.A. Mohammed, P. Gunnasegaran, N.H. Shuaib, Int. Commun. Heat Mass Transfer 38(1), 63–68 (2011)

    Article  Google Scholar 

  76. L. Gong, K. Kota, W. Tao, Y. Joshi, J. Heat Transfer, 133(5), (2011).

  77. G. Xie, J. Liu, W. Zhang, B. Sunden, J. Electron. Pack., 134(4), (2012).

  78. G. Xie, J. Liu, W. Zhang, B. Sundén, Numerical analysis of flow and thermal performance of a water-cooled wavy microchannel heat sink. ASME-Int. Mech. Eng. Cong. Expos. 45233, 1411–1417 (2012)

    Google Scholar 

  79. G. Xie, J. Liu, Y. Liu, B. Sunden, W. Zhang, J. Electron. Pack.135(2), (2013).

  80. P.K. Singh, H.F.S. Tan, C.J. Teo, P.S. Lee, Flow and heat transfer in branched wavy microchannels, in ASME-International Conference on Micro/Nanoscale Heat Transfer, 36154, V001T11A002 (2013).

  81. A. Eltaweel, A. Baobeid, B. Tompkins, I. Hassan, Numerical investigation of heat transfer characteristics of a novel wavy-tapered microchannel heat sink, in ASME-Heat Transfer Summer Conference, 50336, V002T11A009 (2016).

  82. L. Wang, Y. Jian, F. Li, Eur. Phys. J. Plus 131(9), 338 (2016)

    Article  Google Scholar 

  83. L. Lin, J. Zhao, G. Lu, X.D. Wang, W.M. Yan, Int. J. Therm. Sci. 118, 423–434 (2017)

    Article  Google Scholar 

  84. D. Toghraie, M.M.D. Abdollah, F. Pourfattah, O.A. Akbari, B. Ruhani, J. Therm. Anal. Calorim. 131(2), 1757–1766 (2018)

    Article  Google Scholar 

  85. F.B.A. Hasis, P.M. Krishna, G.P. Aravind, M. Deepu, S.R. Shine, Int. J. Therm. Sci. 128, 124–136 (2018)

    Article  Google Scholar 

  86. H. Ermagan, R. Rafee, Int. J. Therm. Sci. 132, 578–588 (2018)

    Article  Google Scholar 

  87. H. Shen, Y. Zhang, C.C. Wang, G. Xie, Appl. Therm. Eng. 137, 228–237 (2018)

    Article  Google Scholar 

  88. J. Rostami, A. Abbassi, J. Harting, Adv. Powder Technol. 29(4), 925–933 (2018)

    Article  Google Scholar 

  89. R. Mashayekhi, E. Khodabandeh, O.A. Akbari, D. Toghraie, M. Bahiraei, M. Gholami, J. Therm. Anal. Calorim. 134(3), 2305–2315 (2018)

    Article  Google Scholar 

  90. Y. Lei, Z. Chen, Int. J. Refrig 90, 46–57 (2018)

    Article  Google Scholar 

  91. Z. Parlak, Heat Mass Transf. 54(11), 3317–3328 (2018)

    Article  ADS  Google Scholar 

  92. D. Sreehari, A.K. Sharma, Int. J. Therm. Sci. 146, 106067 (2019)

    Article  Google Scholar 

  93. G.D. Xia, Y.X. Tang, L.X. Zong, D.D. Ma, Y.T. Jia, R.Z. Rong, Int. Commun. Heat Mass Transfer 101, 89–102 (2019)

    Article  Google Scholar 

  94. H. Bazdar, D. Toghraie, F. Pourfattah, O.A. Akbari, H.M. Nguyen, A. Asadi, J. Therm. Anal. Calorim. 139(3), 2365–2380 (2020)

    Article  Google Scholar 

  95. J.F. Zhu, X.Y. Li, S.L. Wang, Y.R. Yang, X.D. Wang, Int. J. Therm. Sci. 146, 106068 (2019)

    Article  Google Scholar 

  96. Y. Lei, Z. Chen, Int. J. Refrig 109, 64–81 (2020)

    Article  Google Scholar 

  97. T.W. Ting, Y.M. Hung, N. Guo, J. Energy Res. Technol. 138(5), 052002 (2016)

    Article  Google Scholar 

  98. S.S. Khaleduzzaman, M.R. Sohel, I.M. Mahbubul, R. Saidur, J. Selvaraj, Int. J. Heat Mass Transf. 101, 104–111 (2016)

    Article  Google Scholar 

  99. N. Ahammed, L.G. Asirvatham, S. Wongwises, Int. J. Heat Mass Transf. 103, 1084–1097 (2016)

    Article  Google Scholar 

  100. A.A. Alfaryjat, D. Stanciu, A. Dobrovicescu, V. Badescu, M. Aldhaidhawi, Numerical investigation of entropy generation in microchannels heat sink with different shapes, in IOP Conference Series: Materials Science and Engineering, 147(1), 012134 (2016).

  101. P. Rastogi, S.P. Mahulikar, Int. J. Therm. Sci. 126, 96–104 (2018)

    Article  Google Scholar 

  102. E. Manay, E.F. Akyürek, B. Sahin, Results Phys. 9, 615–624 (2018)

    Article  ADS  Google Scholar 

  103. S. Sadripour, A.J. Chamkha, Thermal Sci. Eng. Prog. 9, 266–280 (2019)

    Article  Google Scholar 

  104. A.A. Alfaryjat, A. Dobrovicescu, D. Stanciu, Chin. J. Chem. Eng. 27(3), 501–513 (2019)

    Article  Google Scholar 

  105. P.R. Chauhan, R. Kumar, R.S. Bharj, Thermal Sci. Eng. Prog. 13, 100365 (2019)

    Article  Google Scholar 

  106. P.R. Chauhan, K. Kumar, R. Kumar, M. Rahimi-Gorji, R.S. Bharj, J. Non-Equilib. Thermodyn. 45(1), 1–17 (2020)

    Article  ADS  Google Scholar 

  107. K. Kumar, R. Kumar, R.S. Bharj, J. Non-Equilib. Thermodyn. 45(4), 333–342 (2020)

    Article  ADS  Google Scholar 

  108. T.H. Ko, Heat Mass Transf. 44(2), 261–271 (2007)

    Article  ADS  Google Scholar 

  109. T.H. Ko, C.S. Cheng, Int. Commun. Heat Mass Transfer 34(8), 924–933 (2007)

    Article  Google Scholar 

  110. O.N. Zonouz, M. Salmanpour, J. Thermodyn. 2012, 574596 (2012)

    Google Scholar 

  111. M. Hedayatizadeh, Y. Ajabshirchi, F. Sarhaddi, S. Farahat, A. Safavinejad, H. Chaji, Heat Mass Transf. 48(7), 1089–1101 (2012)

    Article  ADS  Google Scholar 

  112. H.M. Bahaidarah, Adv. Mech. Eng. 8(8), 1687814016660929 (2016)

    Article  Google Scholar 

  113. S. Rashidi, M. Akbarzadeh, R. Masoodi, E.M. Languri, Int. J. Heat Mass Transf. 109, 812–823 (2017)

    Article  Google Scholar 

  114. M. Akbarzadeh, S. Rashidi, J.A. Esfahani, Appl. Therm. Eng. 116, 278–291 (2017)

    Article  Google Scholar 

  115. W. Wang, Y. Zhang, J. Liu, Z. Wu, B. Li, B. Sundén, Numer. Heat Transfer A Appl. 73(11), 788–805 (2018)

    Article  ADS  Google Scholar 

  116. W. Wang, Y. Zhang, J. Liu, B. Li, B. Sundén, Int. J. Heat Mass Transf. 126, 836–847 (2018)

    Article  Google Scholar 

  117. X. Shi, Y. Wang, X. Huai, K. Cheng, Appl. Therm. Eng. 157, 113714 (2019)

    Article  Google Scholar 

  118. J.A. Esfahani, M. Akbarzadeh, S. Rashidi, M.A. Rosen, R. Ellahi, Int. J. Heat Mass Transf. 109, 1162–1171 (2017)

    Article  Google Scholar 

  119. R. Dormohammadi, M. Farzaneh-Gord, A. Ebrahimi-Moghadam, M.H. Ahmadi, J. Mol. Liq. 269, 229–240 (2018)

    Article  Google Scholar 

  120. S. Bhattacharyya, S.K. Pal, I. Pop, J. Therm. Anal. Calorim. 138(5), 3205–3221 (2019)

    Article  Google Scholar 

  121. M. Akbarzadeh, S. Rashidi, N. Karimi, N. Omar, J. Therm. Anal. Calorim. 135(1), 177–194 (2019)

    Article  Google Scholar 

  122. A. Ebrahimi-Moghadam, A.J. Moghadam, Appl. Therm. Eng. 149, 889–898 (2019)

    Article  Google Scholar 

  123. O.G. Fadodun, A.A. Amosun, N.L. Okoli, D.O. Olaloye, J.A. Ogundeji, S.S. Durodola, J. Thermal Anal. Calorim., 1–16 (2020).

  124. A.A. Al-Rashed, A. Shahsavar, O. Rasooli, M.A. Moghimi, A. Karimipour, M.D. Tran, Int. Commun. Heat Mass Transfer 104, 118–126 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to Mr. Prathvi Raj Chauhan, research scholar, Centre for Energy Studies, Indian Institute of Technology, Delhi, India for his valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Kumar.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Kumar, R., Bharj, R.S. et al. Irreversibility analysis of the convective flow through corrugated channels: a comprehensive review. Eur. Phys. J. Plus 136, 402 (2021). https://doi.org/10.1140/epjp/s13360-021-01388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01388-x

Navigation