Skip to main content
Log in

Numerical simulation of mixed convection in a lid-driven trapezoidal cavity with flexible bottom wall and filled with a hybrid nanofluid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Mixed convection in a lid-driven trapezoidal cavity with flexible bottom wall and filled with a hybrid nanofluid is analyzed numerically in this study. Hybrid nanofluid that is a combination of Al2O3-Cu/Water is employed in this investigation. Finite element analysis is utilized in this study using the fluid–structure-interface Multiphysics of COMSOL. The results presented in this investigation showed that both Reynolds number and volume fraction of nanoparticles significantly affect flow and heat transfer characteristics inside the cavity. The results revealed that FSI model has more profound effect on the heat transfer compared with rigid wall model. Further, the present results showed that FSI was more feasible to enhance heat transfer compared with the addition of nanoparticles. This study confirms the promising applications of FSI model in enhancing heat transfer characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c p :

Specific heat

\(\user2{\ddot{d}}_{s}\) :

Acceleration of the solid domain

E*:

Elasticity

\({\mathbf{f}}_{s}^{B}\) :

Solid body force

g :

Gravity

Gr:

Grashof number

k :

Thermal conductivity

p :

Pressure

Pr:

Prandtl number

Re:

Reynolds number

u :

Velocity vector

u :

X-component velocity

U :

Non-dimensional velocity in X-direction

T :

Temperature

v :

y-velocity component

V :

Non-dimensional velocity in Y-direction

w :

Mesh velocity

x,y :

Coordinates

ρ :

Density

β :

Thermal expansion coefficient

\(\varvec\phi\) :

Volume fraction

\(\mu\) :

Viscosity

C :

Cold

H :

Hot

hnf:

Hybrid nanofluid

s :

Solid

1:

Al2O3

2:

Cu

References

  1. K. Khanafer, K. Vafai, Applications of nanofluids in porous medium review a Critical Review. J. Therm. Anal. Calorim. 135, 1479–1492 (2019)

    Article  Google Scholar 

  2. A. Ghadimi, R. Saidur, H.S.C. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54, 4051–4068 (2011)

    Article  Google Scholar 

  3. M. Ramezanizadeh, M.A. Nazari, M.H. Ahmadi, G. Lorenzini, I. Pop, A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J. Therm. Anal. Calorim. 138, 827–843 (2019)

    Google Scholar 

  4. L. Syam Sundar, K.V. Sharma, M.T. Naik, M.K. Singh, Empirical and theoretical correlations on viscosity of nanofluids: a review. Renew. Sustain. Energy Rev. 25, 670–686 (2013)

    Article  Google Scholar 

  5. A. Asadi, S. Aberoumand, A. Moradikazerouni, F. Pourfattah, G. Żyła, P. Estellé, O. Mahian, S. Wongwises, H.M. Nguyen, A. Arabkoohsar, Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: a state-of-the-art review. Powder Technol. 352, 209–226 (2019)

    Article  Google Scholar 

  6. A.H. Salman, H.A. Mohammed, K.M. Munisamy, ASh. Kherbeet, Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review. Renew. Sustain. Energy Rev. 28, 848–880 (2013)

    Article  Google Scholar 

  7. B. Ghasemi, S.M. Aminossadati, Natural convection heat transfer in an inclined enclosure filled with a water-Cuo nanofluid. Numer. Heat Transf Part A Appl. 55, 807–823 (2009)

    Article  ADS  Google Scholar 

  8. W. Wang, B.-W. Li, Z.-H. Rao, G. Liu, S.-M. Liao, Two- and three-dimensional simulation of natural convection flow of CuO-water in a horizontal concentric annulus considering nanoparticles’ Brownian motion. Numer. Heat Transf. Part A Appl. 76, 967–990 (2019)

    Article  ADS  Google Scholar 

  9. A. Quintino, E. Ricci, M. Corcione, Thermophoresis-induced oscillatory natural convection flows of water-based nanofluids in tilted cavities. Numer. Heat Transf. Part A Appl. 71, 270–289 (2017)

    Article  ADS  Google Scholar 

  10. M.B. Ben Hamida, K. Charrada, Natural convection heat transfer in an enclosure filled with an ethylene glycol—copper nanofluid under magnetic fields. Numer. Heat Transf. Part A Appl. 67, 902–920 (2015)

    Article  ADS  Google Scholar 

  11. G. Huminic, A. Huminic, Hybrid nanofluids for heat transfer applications - A state-of-the-art review. Int. J. Heat Mass Transf. 125, 82–103 (2018)

    Article  MATH  Google Scholar 

  12. J.A. Ranga Babu, K. Kumar, S. Rao, State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Rev. 77, 551–565 (2017)

    Article  Google Scholar 

  13. L.S. Sundar, K.V. Sharma, M.K. Singh, A.C.M. Sousa, Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew. Sustain. Energy Rev. 68, 185–198 (2017)

    Article  Google Scholar 

  14. M.U. Sajid, H.M. Ali, Thermal conductivity of hybrid nanofluids: a critical review. Int. J. Heat Mass Transf. 126, 211–234 (2018)

    Article  Google Scholar 

  15. J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)

    Article  Google Scholar 

  16. M. Afrand, D. Toghraie, B. Ruhani, Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: An experimental study. Exp. Therm. Fluid Sci. 77, 38–44 (2016)

    Article  Google Scholar 

  17. T. Tayebi, A.J. Chamkha, Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids. Numer. Heat Transf. Part A Appl. 70, 1141–1156 (2016)

    Article  ADS  Google Scholar 

  18. M.H. Esfe, S. Saedodin, E.H. Malekshah, A. Babaie, H. Rostamian, Mixed convection inside lid-driven cavities filled with nanofluids A comprehensive review. J. Therm. Anal. Calorim. 135, 813–859 (2019)

    Article  Google Scholar 

  19. S.K. Pal, S. Bhattacharyya, I. Pop, A numerical study on non-homogeneous model for the conjugate-mixed convection of a Cu-water nanofluid in an enclosure with thick wavy wall. Appl. Math. Comput. 356, 219–234 (2019)

    MathSciNet  MATH  Google Scholar 

  20. S.K. Pal, S. Bhattacharyya, I. Pop, Effect of solid-to-fluid conductivity ratio on mixed convection and entropy generation of a nanofluid in a lid-driven enclosure with a thick wavy wall. Int. J. Heat Mass Transf. 127, 885–900 (2018)

    Article  Google Scholar 

  21. X. Han, X. Meng, C. Li, Buoyancy-driven convection heat transfer of copper–water nanofluid in a square enclosure under the different periodic oscillating boundary temperature waves. Case Stud. Therm. Eng. 6, 93–103 (2015)

    Article  Google Scholar 

  22. A.I. Alsabery, M.A. Sheremet, A.J. Chamkha, I. Hashim, Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder. Int. J. Mech. Sci. 150, 637–655 (2019)

    Article  Google Scholar 

  23. C. Cho, C. Chen, C.K. Chen, Mixed convection heat transfer performance of water-based nanofluids in lid-driven cavity with wavy surfaces. Int. J. Therm. Sci. 68, 181–190 (2013)

    Article  Google Scholar 

  24. F. Azizul, A. Alsabery, I. Hashim, Heatlines visualization of mixed convection flow in a wavy heated cavity filled with nanofluids and having an inner solid block. Int. J. Mech. Sci. 175, 105529 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105529

    Article  Google Scholar 

  25. T. Basak, A.J. Chamkha, Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 55, 5526–5543 (2012)

    Article  Google Scholar 

  26. M.A. Sheremet, I. Pop, Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno’s mathematical model. Appl. Math. Comput. 266, 792–808 (2015)

    MathSciNet  MATH  Google Scholar 

  27. M.A. Sheremet, I. Pop, O. Mahian, Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: Application in solar collectors. Int. J. Heat Mass Transf. 116, 751–761 (2018)

    Article  Google Scholar 

  28. R.K. Nayak, S. Bhattacharyya, I. Pop, Numerical study on mixed convection and entropy generation of a nanofluid in a lid-driven square enclosure. J. Heat Transf. (2016). https://doi.org/10.1115/1.4031178

    Article  Google Scholar 

  29. R.K. Nayak, S. Bhattacharyya, I. Pop, Effects of nanoparticles dispersion on the mixed convection of a nanofluid in a skewed enclosure. Int. J. Heat Mass Transf. 125, 908–919 (2018)

    Article  Google Scholar 

  30. C. Revnic, M. Ghalambaz, T. Grosan, M. Sheremet, I. Pop, Impacts of non-uniform border temperature variations on time-dependent nanofluid free convection within a trapezium: Buongiorno’s nanofluid model. Energies (2019). https://doi.org/10.3390/en12081461

    Article  Google Scholar 

  31. S.K. Saha, Magnetohydrodynamic buoyancy driven Al2O3-water nanofluid flow in a differentially heated trapezoidal enclosure with a cylindrical barrier. Int. Commun. Heat Mass Transf. 114, 104593 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104593

    Article  Google Scholar 

  32. M.H. Esfe, S. Saedodin, E.H. Malekshah, A. Babaie, H. Rostamian, Mixed convection inside lid-driven cavities filled with nanofluids. J. Therm. Anal. Calorim. 135, 813–859 (2019)

    Article  Google Scholar 

  33. S. Dutta, N. Goswami, A.K. Biswas, S. Pati, Numerical investigation of magnetohydrodynamic natural convection heat transfer and entropy generation in a rhombic enclosure filled with Cu-water nanofluid. Int. J. Heat Mass Transf. 136, 777–798 (2019)

    Article  Google Scholar 

  34. M.A. Sheremet, T. Grosan, I. Pop, Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. Eur. J. Mech. B/Fluids 53, 241–250 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. D. Kashyap, A.K. Dass, Effect of boundary conditions on heat transfer and entropy generation during two-phase mixed convection hybrid Al2O3-Cu/water nanofluid flow in a cavity. Int. J. Mech. Sci. 157–158, 45–59 (2019)

    Article  Google Scholar 

  36. S.A. Mehryan, F.M. Kashkooli, M. Ghalambaz, A.J. Chamkha, Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Adv. Powder Technol. 28, 2295–2305 (2017)

    Article  Google Scholar 

  37. S.A. Mehryan, M. Ghalambaz, A.J. Chamkha, M. Izadi, Numerical study on natural convection of Ag–MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model. Powder Technol. 367, 443–455 (2020)

    Article  Google Scholar 

  38. B. Takabi, S. Salehi, Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv. Mech. Eng. (2014). https://doi.org/10.1155/2014/147059

    Article  Google Scholar 

  39. M. Ul- Hassan, K. Begum, Abdul Karim, Computational Analysis of MHD Flow in Trapezoidal Cavity with Sinusoidal wavy Surface Filled with Hybrid Nanofluid. Int. J. Math. Trends Technol., 65 Sep 2019, ISSN: 2231–5373, 2019.

  40. Ishrat Zahan, R. Nasrin, M. A. Alim, mixed convective hybrid nanofluid flow in lid-driven undulated cavity: effect of MHD and joule heating. J. Naval Archit. Marine Eng. https://doi.org/10.3329/jname.v16i2.40585, 2019

  41. A. J. Chamkha, I. V. Miroshnichenko, M. A. Sheremet, Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semicircular Cavity. J. Therm. Sci. Eng. Appl. DECEMBER 2017, Vol. 9 / 041004–1, DOI: https://doi.org/10.1115/1.4036203

  42. A. Al-Amiri, K. Khanafer, Fluid–structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall. Int. J. Heat Mass Transf. 54, 3826–3836 (2011)

    Article  MATH  Google Scholar 

  43. K. Khanafer, K. Vafai, A critical review on the applications of fluid-structure interaction in porous media. Int. J. Numer. Meth. Heat Fluid Flow 30, 308–327 (2020)

    Article  Google Scholar 

  44. A.I. Alsabery, H. Saleh, M. Ghalambaz, A.J. Chamkha, I. Hashim, Fluid-structure interaction analysis of transient convection heat transfer in a cavity containing inner solid cylinder and flexible right wall. Int. J. Numer. Meth. Heat Fluid Flow 29, 3756–3780 (2019)

    Article  Google Scholar 

  45. F. Selimefendigil, H.F. Oztop, A.J. Chamkha, Fluid–structure-magnetic field interaction in a nanofluid filled lid-driven cavity with flexible side wall. Eur. J. Mech. B/Fluids 61, 77–85 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. F. Selimefendigil, H.F. Oztop, Mixed convection in a partially heated triangular cavity filled with nanofluid having a partially flexible wall and internal heat generation. J. Taiwan Inst. Chem. Eng. 70, 168–178 (2017)

    Article  Google Scholar 

  47. A. Raisi, I. Arvin, A numerical study of the effect of fluid-structure interaction on transient natural convection in an air-filled square cavity. Int. J. Therm. Sci. 128, 1–14 (2018)

    Article  Google Scholar 

  48. K. Khanafer, Comparison of flow and heat transfer characteristics in a lid-driven cavity between flexible and modified geometry of a heated bottom wall. Int. J. Heat Mass Transf. 78, 1032–1041 (2014)

    Article  Google Scholar 

  49. E. Jamesahar, M. Sabour, M. Shahabadi, S.A. Mehryan, M. Ghalambaz, Mixed convection heat transfer by nanofluids in a cavity with two oscillating flexible fins: A fluid–structure interaction approach. Appl. Math. Model. 82, 72–90 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. E.H. Aly, I. Pop, MHD flow and heat transfer near stagnation point over a stretching/ shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid. Powder Technol. 367, 192–205 (2020). https://doi.org/10.1016/j.powtec.2020.03.030

    Article  Google Scholar 

  51. R. Iwatsu, J.M. Hyun, K. Kuwahara, Mixed convection in a driven cavity with a stable vertical temperature gradient. Int. J. Heat Mass Transf. 36, 1601–1608 (1993)

    Article  Google Scholar 

  52. M.A.R. Sharif, Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom. Appl. Therm. Eng. 27, 1036–1042 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bader Alshuraiaan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshuraiaan, B., Pop, I. Numerical simulation of mixed convection in a lid-driven trapezoidal cavity with flexible bottom wall and filled with a hybrid nanofluid. Eur. Phys. J. Plus 136, 580 (2021). https://doi.org/10.1140/epjp/s13360-021-01349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01349-4

Navigation