Skip to main content
Log in

Tensor force effect on the neutron shell closure in super-heavy elements

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A systematic study of the effect of tensor force on the evolution of shell structure in even–even super-heavy nuclei in the region of proton numbers \(Z=114\), 120 and 126 and in the region of neutron numbers \(178 \le N \le \) 188 is presented. We use, in this investigation, the Hartree–Fock framework by means of different types of Skyrme functionals in two cases with and without tensor force. The Bardeen–Cooper–Schriefer (BCS) approximation has been used to treat the pairing correlations. By investigating structural and decay properties of nuclei under consideration, it is found that \(N=184\) shell gap is more enhanced by the tensor interaction which depends on the isoscalar tensor coupling constant \(C_0^J\) of the used Skyrme interactions. In the case without tensor interaction, this gap is significant only for T22, T24, T42 and SLy5. So, it disappears with T46, T64 and T66 and is too weak for T26, T44 and T62. Without exception, the shell gap at \(N=184\) becomes more pronounced when the tensor part is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.C. Barber, P.J. Karol, H. Nakahara, E. Vardaci, E.W. Vogt, Pure Appl. Chem. 83(7), 1485–1498 (2011)

    Article  Google Scholar 

  2. P.J. Karol, R.C. Barber, B.M. Sherrill, E. Vardaci, T. Yamazaki, Pure Appl. Chem. 88(1–2), 139–153 (2016)

    Article  Google Scholar 

  3. S.G. Nilsson, J.R. Nix, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, P. Möller, Nucl. Phys. A 115, 545 (1968)

    Article  ADS  Google Scholar 

  4. P. Möller, J.R. Nix, J. Phys. G 20, 1681 (1994)

    Article  ADS  Google Scholar 

  5. K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 56, 238 (1997)

    Article  ADS  Google Scholar 

  6. W. Zhang, J. Meng, S.Q. Zhang, L.S. Geng, H. Toki, Nucl. Phys. A 753, 106 (2005)

    Article  ADS  Google Scholar 

  7. S. Cwiok, J. Dobaczewski, P.H. Heenen, P. Magierski, W. Nazarewicz, Nucl. Phys. A 611, 211 (1996)

    Article  ADS  Google Scholar 

  8. M. Bender, K. Rutz, P.G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 60, 034304 (1999)

    Article  ADS  Google Scholar 

  9. Yu. Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006)

  10. Yu. Ts. Oganessian et al., Phys. Rev. C 79, 024603 (2009)

  11. S.E. Agbemava, A.V. Afanasjev, T. Nakatsukasa, P. Ring, Phys. Rev. C 92(5), 054310 (2015)

    Article  ADS  Google Scholar 

  12. H.A. Bethe, Phys. Rev. 57, 260 (1940a)

    Article  ADS  Google Scholar 

  13. H.A. Bethe, Phys. Rev. 57, 390 (1940b)

    Article  ADS  Google Scholar 

  14. T.H.R. Skyrme, 2, 910–916 (1957)

  15. T.H.R. Skyrme, 9, 615–634 (1959)

  16. T.H.R. Skyrme, Nucl. Phys 9, 635–640 (1959)

    Article  Google Scholar 

  17. F. Stancu, D.M. Brink, H. Flocard, Phys. Lett. B 68, 108–112 (1977)

    Article  ADS  Google Scholar 

  18. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626–647 (1972)

    Article  ADS  Google Scholar 

  19. T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)

    Article  ADS  Google Scholar 

  20. T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Phys. Rev. Lett. 95, 232502 (2005)

    Article  ADS  Google Scholar 

  21. T. Otsuka, T. Matsuo, D. Abe, Phys. Rev. Lett. 97, 162501 (2006)

    Article  ADS  Google Scholar 

  22. B.A. Brown et al., Phys. Rev. C 74, 061303(R) (2006)

    Article  ADS  Google Scholar 

  23. G. Colò, H. Sagawa, S. Fracasso, P.F. Bortignon, Phys. Lett. B 646, 227–31 (2007)

    Article  ADS  Google Scholar 

  24. M. Zalewski, J. Dobaczewski, W. Satuła, T.R. Werner, Phys. Rev. C 77, 024316 (2008)

    Article  ADS  Google Scholar 

  25. M. Bender, K. Bennaceur, T. Duguet et al., Phys. Rev. C 80, 064302 (2009)

    Article  ADS  Google Scholar 

  26. T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 76, 014312 (2007)

    Article  ADS  Google Scholar 

  27. E.B. Suckling, P.D. Stevenson, Eur. Phys. Lett. 90, 12001 (2010)

    Article  ADS  Google Scholar 

  28. X.R. Zhou, H. Sagawa, J. Phys. G: Nucl. Part. Phys. 39(8), 085104 (2012)

    Article  ADS  Google Scholar 

  29. W. Ryssens, V. Hellemans, M. Bender, P.-H. Heenen, Comput. Phys. Commun. 187, 175–194 (2015)

    Article  ADS  Google Scholar 

  30. J.S. Bell, T.H.R. Skyrme, Phil. Mag. 1, 1055 (1956)

    Article  ADS  Google Scholar 

  31. T.H.R. Skyrme, Nuclear Phys. 9, 635 (1958)

    Article  ADS  Google Scholar 

  32. T.H.R. Skyrme, Phil. Mag. 1, 1043 (1956)

    Article  ADS  Google Scholar 

  33. T.H.R. Skyrme, Nuclear Phys. 9, 615 (1958)

    Article  ADS  Google Scholar 

  34. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Modern Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  35. V. Hellemans, P.-H. Heenen, M. Bender, Phys. Rev. C 85, 014326 (2012)

    Article  ADS  Google Scholar 

  36. C. Rigollet, P. Bonche, H. Flocard, P.-H. Heenen, Phys. Rev. C 59, 3120 (1999)

    Article  ADS  Google Scholar 

  37. W. Ryssens, P.H. Heenen, M. Bender, Phys. Rev. C 92(6), 064318 (2015)

    Article  ADS  Google Scholar 

  38. P. Möller, A.J. Sierka, T. Ichikawab, H. Sagawa, At. Data Nucl. Data Tables 109, 1–204 (2016)

    Article  ADS  Google Scholar 

  39. M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  40. I. Moumene, A. El Batoul, M. Oulne, to be published

  41. T. Otsuka et al., Rev. Mod. Phys. 92, 015002 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by the National Center for Scientific and Technical Research (CNRST), Rabat, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Adri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Adri, M., Oulne, M. Tensor force effect on the neutron shell closure in super-heavy elements. Eur. Phys. J. Plus 136, 343 (2021). https://doi.org/10.1140/epjp/s13360-021-01328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01328-9

Navigation